

Lecture Notes in Computer Science 4776
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Nikita Borisov Philippe Golle (Eds.)

Privacy Enhancing
Technologies

7th International Symposium, PET 2007
Ottawa, Canada, June 20-22, 2007
Revised Selected Papers

13

Volume Editors

Nikita Borisov
University of Illinois at Urbana-Champaign
Department of Electrical and Computer Engineering
1308 West Main Street, Urbana, IL 61801-2307, USA
E-mail: nikita@uiuc.edu

Philippe Golle
Palo Alto Research Center
3333 Coyote Hill Road, Palo Alto, CA 94304, USA
E-mail: Philippe.Golle@parc.com

Library of Congress Control Number: 2007938055

CR Subject Classification (1998): E.3, C.2, D.4.6, K.6.5, K.4, H.3, H.4

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-75550-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-75550-0 Springer Berlin Heidelberg New York

Springer-Verlag Berlin Heidelberg holds the exclusive right of distribution and reproduction of this work,
for a period of three years starting from the date of publication.

Springer is a part of Springer Science+Business Media

springer.com

Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12171590 06/3180 5 4 3 2 1 0

Foreword

The PET community has grown in size considerably since the first PET workshop
was held in 2000. With this growth came an increase in the number and quality
of submissions. PET has become a premier venue for publishing original research
on privacy enhancing technologies, and the current acceptance ratio puts PET
in the same league as other highly selective security and privacy venues. To
appropriately reflect this evolution, the PET workshop is changing its name to
the Privacy Enhancing Technologies Symposium.

PET 2007 was held at the University of Ottawa, Canada, on June 20–22, 2007.
We received 84 full-paper submissions, of which 16 were selected for presentation
at the symposium. PET also included a keynote address and two panel discus-
sions. PET was once again collocated with the IAVoSS Workshop on Trustworthy
Elections (WOTE 2007), with a full day of plenary sessions. All participants were
free to attend sessions from both events.

The program chairs would like to thank, first of all, the authors, speakers,
and panelists for their contribution to the content of the workshop. We would
also like to thank the program committee for their hard work of a month of
reviews and two more weeks of intense discussions, helping to ensure a program
of high scientific quality. As well, we would like to acknowledge the contribution
of the external reviewers, who assisted the program committee with the reviews.
A special thanks is due to the designers of the Websubmission and Webreview
software at K.U. Leuven for allowing us to use their software to help with the
selection process, and to Thomas Herlea for his help in getting the software up
and running.

Our general chair, Carlisle Adams, did an outstanding job taking care of
the local arrangements and making sure the symposium ran smoothly. We also
would like to thank Jeremy Clark for designing and maintaining the PET 2007
Website. We are very grateful to Josh Benaloh, the chair of WOTE 2007, for
his help in coordinating the two events. Finally, PET 2007 was made possible,
and more affordable, thanks to our sponsors: Microsoft, ORNEC, Bell Privacy
Centre of Excellence, PGP Corporation, and Google. We are extremely grateful
for their generous support.

The Award for Outstanding Research in Privacy Enhancing Technologies
was given this year to Stephen C. Bono, Matthew Green, Adam Stubblefield, Ari
Juels, Aviel D. Rubin, and Michael Szydlo for their paper “Security Analysis of a
Cryptographically-Enabled RFID Device.” The award is sponsored by Microsoft
and by the Office of the Information and Privacy Commissioner of Ontario and
the winners were selected through an independent prize committee headed by
George Danezis to whom we are thankful.

July 2007 Nikita Borisov
Philippe Golle

Organization

Organizers

General Chair Carlisle Adams (University of Ottawa, Canada)
Program Chairs Nikita Borisov (University of Illinois at Urbana-Champaign,

USA)
Philippe Golle (Palo Alto Research Center, USA)

PET Prize George Danezis (K.U. Leuven, Belgium)
Stipends Roger Dingledine (The Tor Project, USA)

Program Committee

Alessandro Acquisti (Carnegie Mellon University, USA)
Mikhail Atallah (Purdue University, USA)
Michael Backes (Saarland University, Germany)
Alastair Beresford (University of Cambridge, UK)
Jean Camp (Indiana University, USA)
George Danezis (K.U. Leuven, Belgium)
Claudia Dı́az (K.U. Leuven, Belgium)
Roger Dingledine (The Tor Project, USA)
Cynthia Dwork (Microsoft Research, USA)
Simson Garfinkel (Harvard University, USA)
Ian Goldberg (University of Waterloo, Canada)
Susan Hohenberger (Johns Hopkins University, USA)
Dennis Kügler (Federal Office for Information Security, Germany)
Bradley Malin (Vanderbilt University, USA)
David Martin (University of Massachusetts at Lowell, USA)
Nick Mathewson (The Tor Project, USA)
David Molnar (University of California at Berkeley, USA)
Steven Murdoch (University of Cambridge, UK)
Andreas Pfitzmann (Dresden University of Technology, Germany)
Mike Reiter (University of North Carolina at Chapel Hill, USA)
Andrei Serjantov (The Free Haven Project, UK)
Vitaly Shmatikov (University of Texas at Austin, USA)
Paul Syverson (Naval Research Laboratory, USA)
Matthew Wright (University of Texas at Arlington, USA)

VIII Organization

External Reviewers

Mike Bergmann
Alexander Böttcher
Katrin Borcea-Pfitzmann
Sebastian Clauß
Richard Clayton
Markus Duermuth
David Evans
Anna Lisa Ferrara
Elke Franz
Bikas Gurung

Thomas Heydt-Benjamin
Yong Ho Hwang
Ponnurangam Kumaraguru
Haim Levkowitz
Benyuan Liu
Matteo Maffei
Sasha Romanosky
Sandra Steinbrecher
Carmela Troncoso
Lasse Øverlier

Sponsors

Microsoft
ORNEC
Bell Privacy Centre of Excellence
PGP Corporation
Google

Table of Contents

Attacking Unlinkability: The Importance of Context 1
Matthias Franz, Bernd Meyer, and Andreas Pashalidis

A Fresh Look at the Generalised Mix Framework . 17
Andrei Serjantov

Two-Sided Statistical Disclosure Attack . 30
George Danezis, Claudia Diaz, and Carmela Troncoso

A Family of Dunces: Trivial RFID Identification and Authentication
Protocols . 45

Gene Tsudik

Louis, Lester and Pierre: Three Protocols for Location Privacy 62
Ge Zhong, Ian Goldberg, and Urs Hengartner

Efficient Oblivious Augmented Maps: Location-Based Services with a
Payment Broker . 77

Markulf Kohlweiss, Sebastian Faust, Lothar Fritsch,
Bartek Gedrojc, and Bart Preneel

Pairing-Based Onion Routing . 95
Aniket Kate, Greg Zaverucha, and Ian Goldberg

Nymble: Anonymous IP-Address Blocking . 113
Peter C. Johnson, Apu Kapadia, Patrick P. Tsang, and
Sean W. Smith

Improving Efficiency and Simplicity of Tor Circuit Establishment and
Hidden Services . 134

Lasse Øverlier and Paul Syverson

Identity Trail: Covert Surveillance Using DNS . 153
Saikat Guha and Paul Francis

Sampled Traffic Analysis by Internet-Exchange-Level Adversaries 167
Steven J. Murdoch and Piotr Zieliński

Browser-Based Attacks on Tor . 184
Timothy G. Abbott, Katherine J. Lai, Michael R. Lieberman, and
Eric C. Price

Enforcing P3P Policies Using a Digital Rights Management System 200
Farzad Salim, Nicholas Paul Sheppard, and Rei Safavi-Naini

X Table of Contents

Simplified Privacy Controls for Aggregated Services — Suspend and
Resume of Personal Data . 218

Matthias Schunter and Michael Waidner

Performance Comparison of Low-Latency Anonymisation Services from
a User Perspective . 233

Rolf Wendolsky, Dominik Herrmann, and Hannes Federrath

Anonymity in the Wild: Mixes on Unstructured Networks 254
Shishir Nagaraja

Author Index . 273

Attacking Unlinkability:

The Importance of Context

Matthias Franz1, Bernd Meyer1, and Andreas Pashalidis2

1 Siemens AG, Corporate Technology,
Otto-Hahn-Ring 6, 81739 München, Germany
{matthias.franz,bernd.meyer}@siemens.com

2 NEC Europe Ltd, Network Laboratories
Kurfürsten-Anlage 36, 69115 Heidelberg, Germany

andreas.pashalidis@netlab.nec.de

Abstract. A system that protects the unlinkability of certain data items
(e. g. identifiers of communication partners, messages, pseudonyms, trans-
actions, votes) does not leak information that would enable an adversary
to link these items. The adversary could, however, take advantage of hints
from the context in which the system operates. In this paper, we introduce
a new metric that enables one to quantify the (un)linkability of the data
items and, based on this, we consider the effect of some simple contextual
hints.

1 Introduction

A number of privacy-preserving systems, such as mix networks, anonymous cre-
dential systems, and secret voting schemes, protect the unlinkability of certain
data items of interest. Mix networks, in particular, protect the unlinkability
of the messages that enter the network with respect to their recipients, the
messages that leave the network with respect to their senders, and, hence, the
identifiers of communicating parties with respect to communication sessions.
Since their introduction [9], a number of different mix network variants have
been proposed (see, for example, [4,19,26,33,34]), some of which have also been
implemented and deployed. Anonymous credentials, on the other hand, protect
the unlinkability of the pseudonyms and the transactions with respect to the
users they correspond to. Since their introduction into the digital world [10],
a number of anonymous credential systems have been proposed (see, for exam-
ple, [7,8,11,12,13,14,29,32,38]). Secret voting schemes protect the unlinkability of
votes with respect to the users who cast them. Such schemes have evolved from
ostracism [24] to sophisticated cryptosystems; for an overview of the current
state of the art the reader is referred to [1].

The problem of analysing how well the above types of system protect unlink-
ability has received some attention during recent years. The focus of most works
is, however, on mix networks (see, for example, [2,15,16,25,27,30]). This is not
surprising since mix networks provide the basis for anonymous communication

N. Borisov and P. Golle (Eds.): PET 2007, LNCS 4776, pp. 1–16, 2007.

2 M. Franz, B. Meyer, and A. Pashalidis

and are, as such, necessary for preserving privacy in a number of settings, in-
cluding the setting of anonymous credentials [17] and, sometimes, the setting of
voting systems (see, for example, [6]).

An adversary that wishes to link the protected items may use information
that is leaked by the system during its operation, or hints from the environment
in which the system operates. In contrast to existing literature, the focus of this
paper is on the latter. That is, we study a number of simple contextual hints
and their effect on unlinkability. Our results apply to all types of unlinkability-
protecting system, including mix networks, anonymous credentials, and secret
voting schemes. The rest of the paper is organised as follows. Section 2 introduces
the metric for unlinkability that is used throughout the paper. Section 3 examines
seven different types of hint and their effect on unlinkability. Finally, Section 4
concludes.

2 Measuring Unlinkability

Consider a set of elements A and a partition π � A of that set. Note that we do
not distinguish between π and the equivalence relation it defines. In the sequel,
we write a1 ≡π a2 if the elements a1, a2 ∈ A lie in the same equivalence class
of π, and a1 �≡π a2 otherwise. Let τ � A denote a ‘target’ partition, chosen
uniformly at random. We use entropy as a metric for unlinkability. That is, the
unlinkability of the elements in a set A against an adversary A is defined as

UA(A) = −
∑

π∈Π

Pr(π = τ) log2(Pr(π = τ)),

where Π = {P : P � A} denotes the set of partitions of A and Pr(π = τ)
denotes, in A’s view, the probability that π is the target partition τ . We further
define the degree of unlinkability of the elements in A against an adversary AH

with access to a hint H about τ as

DA(AH) =
UA(AH)
UA(A∅)

,

where A∅ denotes the adversary without any hints. That is, A∅ knows A but
has no information about τ . The set of candidate partitions for A∅ is there-
fore ΠA(A∅) = Π , i. e. the set of all partitions of A. The number |ΠA(A∅)| = B|A|
of such partitions, a Bell number [3,35], is given by the recursive formula

Bn+1 =
n∑

k=0

(
n

k

)
Bk (1)

where B0 = 1.1 Since τ is chosen uniformly at random, the unlinkability of the
elements in A is therefore at its maximum, i. e. UA(A∅) = log2(B|A|) bits. This

1 The first few Bell numbers are 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147.

Attacking Unlinkability: The Importance of Context 3

is the best case from a privacy point of view: all partitions of A are equally likely
to be the target partition τ .

Remark 1: In the setting of unlinkability-protecting systems, the goal of the
adversary is to identify a target partition from an ‘anonymity set’ of candidate
partitions. The fact that the information-theoretic metric we use for unlinkability
is identical to the metric introduced for anonymity in [18,36], is therefore natural.

Remark 2: UA is a measure of the information that is contained in the prob-
ability distribution that the adversary assigns to the set of all partitions of A.
Since we assume that τ is selected uniformly at random, this distribution is, a
priori, uniform. However, a hint may enable the adversary to change his view
such that, a posteriori, some partitions are more likely than others. The hints
we consider in this paper enable the adversary to exclude a number of candidate
partitions (i.e. to reduce the size of the ‘anonymity set’) while the remaining
partitions remain equally likely.

Example: Consider an anonymous help line where a clerk offers advice over
the telephone. Suppose that, one day, the clerk receives four calls, denoted A =
{λ1, λ2, λ3, λ4}. Without any additional information, all B4 = 15 partitions of A
constitute valid ways to link these calls. Since without any additional information
all these partitions are equally likely, the unlinkability of the calls is, in this case,
log2(15) � 3.9 bits, and the degree of unlinkability is log2(15)/ log2(15) = 1.

The clerk, however, has some additional information: he realised that the calls
λ1 and λ2 were made by men, and that the calls λ3 and λ4 by women (however,
the clerk does not know whether or not the same person called twice). This
hint effectively rules out all partitions where λ1 or λ2 appears in the same equi-
valence class as λ2 or λ4. In particular, only four partitions remain valid, namely
{(λ1, λ2), (λ3, λ4)}, {(λ1, λ2), (λ3), (λ4)}, {(λ1), (λ2), (λ3, λ4)}, and {(λ1), (λ2),
(λ3), (λ4)}. Since these four partitions are equally likely, the unlinkability of
the calls is, in this case, log2(4) = 2 bits, and the degree of unlinkability is
log2(2)/ log2(15) � 0.52.

3 The Importance of Context

In this section, we examine seven types of hint that an adversary may obtain
from the operational context of the system. In particular, we examine hints
that reveal to the adversary (a) the number of equivalence classes in τ , (b) the
cardinality of equivalence classes in τ , (c) the fact that all equivalence classes in
τ have a given cardinality, (d) a ‘reference partition’ the equivalence classes of
which have exactly one representative in each equivalence class in τ , (e) a set
of element pairs that are equivalent in τ , (f) a set of element pairs that are not
equivalent in τ , and (g) a combination of (e) and (f).

3.1 The Number of Equivalence Classes

Consider an adversary AH1 with a hint H1 = (α), where α ∈ N and 1 ≤ α ≤ |A|,
that reveals how many equivalence classes τ has. AH1 can restrict its attention

4 M. Franz, B. Meyer, and A. Pashalidis

to ΠA(AH1) = {P : P � A, |P | = α}, i. e. the partitions that divide A into
exactly α equivalence classes. The number of such partitions, which is a Stirling
number of the second kind [22], is given by

|ΠA(AH1)| =
1
α!

α∑

k=0

(−1)k

(
α

k

)
(α − k)|A|.

Since τ is chosen uniformly at random, the unlinkability of the elements in A
is UA(AH1) = log2(|ΠA(AH1)|) bits. Figure 1 shows the degree of unlinkability
DA(AH1) as a function of |A|.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120

de
gr

ee
 o

f u
nl

in
ka

bi
lit

y

number of elements

2 equivalence classes
3 equivalence classes
4 equivalence classes
6 equivalence classes
8 equivalence classes

Fig. 1. Degree of unlinkability DA(AH1) of elements in a set A as a function of |A|, if
it is known that they must be divided into α equivalence classes

How to obtain this hint: The number α typically is the number of users in
a system. In the setting of mix networks, this number may be known to the
operator of the network if users are required to register themselves or pay a
fee. Otherwise, obtaining such a hint may be tricky due to the possibility of
sybil attacks [20]. Whether or not it is straightforward to obtain this hint in
the setting of anonymous credentials depends on the application. In the case
of cash, for example, the financial institution is very likely to know how many
users participate in the system. Similarly, in the case of demographic or personal
credentials (such as age certificates or driving licences), the issuing authority is
also likely to know the number of users in the system. In the setting of secret
voting, there exist multiple ways to obtain the number of voters. The number of
cast ballots, for example, may be conclusive about the number of voters.

3.2 The Cardinality of Equivalence Classes

Consider an adversary AH2 with a hint H2 = (β1, β2, . . . , βα), where
∑α

i=1 βi =
|A| and 1 < α < |A|, that reveals the sizes of the equivalence classes in τ . That is,

Attacking Unlinkability: The Importance of Context 5

if τ = {T1, T2, . . . , Tα} � A, H2 reveals that |T1| = β1, |T2| = β2, and so on. AH2

can restrict its attention to ΠA(AH2) = {P : P = {T1, T2, . . . , Tα} � A, ∀1 ≤ i ≤
α, |Ti| = βi}, i. e. the partitions that divide A into exactly α equivalence classes
with cardinalities β1, β2, . . . , βα. The number of such partitions is given by

|ΠA(AH2)| =
|A|!

∏α
i=1(βi!)

∏|A|
i=1(γi!)

(2)

where, for all 1 ≤ i ≤ |A|, γi = |{β ∈ H2 : β = i}| (for a proof see Appendix B).
That is, γi is the number of equivalence classes in τ that have cardinality i.
Since τ is chosen uniformly at random, the unlinkability of the elements in A
is UA(AH2) = log2(|ΠA(AH2)|) bits. It is perhaps worth noting that there exist
hints of type H2 which do not reveal any information as to whether any two given
elements are equivalent or not. This is in contrast to what is claimed in [37] (see
Appendix A).

As a special case, consider an adversary AH3 with a hint H3 = (α), where
α ∈ N divides |A|, that reveals the fact that τ has α equivalence classes of
the same cardinality |A|/α. AH3 can restrict its attention to ΠA(AH3) = {P :
P � A, ∀p ∈ P, |p| = |A|/α}, i. e. the partitions that divide A into exactly α
equivalence classes of equal cardinality |A|/α. The number of such partitions is
given by

|ΠA(AH3)| =
|A|!

α!((|A|/α)!)α
(3)

(for a proof see Appendix B). Since τ is chosen uniformly at random, the unlink-
ability of the elements in A is UA(AH3) = log2(|ΠA(AH3)|) bits. Figure 2 shows
the degree of unlinkability DA(AH3) as a function of |A|.

How to obtain this hint:2 In the setting of mix networks, this hint may be
obtained if it is known how many messages each user sends in each session. In
the setting of anonymous credentials, it is possible to obtain this hint if it is
known how many pseudonyms each user has. In the setting of secret voting, this
hint may be obtained if it is known how many ballots each user has cast.

3.3 A Reference Partition

Consider an adversary AH4 with a hint H4 = (ρ), consisting of a ‘reference
partition’ ρ = {R1, R2, . . . , R|A|/α} � A such that, for all 1 ≤ i ≤ |A|/α, |Ri| = α
(note that α divides |A|), and that reveals the fact that each of the equivalence
classes of τ contains exactly one element from Ri. AH4 can restrict its attention
to ΠA(AH4) = {P : P � A, P is a transversal of ρ}, i. e. the partitions that
divide A into α equivalence classes of equal cardinality |A|/α, where each class
contains exactly one element from each of R1, R2, . . . , R|A|/α. The number of
such partitions is given by

|ΠA(AH4)| = (α!)(|A|/α)−1 (4)
2 This paragraph refers to hints of both type H2 and H3.

6 M. Franz, B. Meyer, and A. Pashalidis

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 20 40 60 80 100 120

de
gr

ee
 o

f u
nl

in
ka

bi
lit

y

number of elements

2 equivalence classes
3 equivalence classes
4 equicalence classes
6 equivalence classes

Fig. 2. Degree of unlinkability DA(AH3) of elements in a set A as a function of |A|, if it
is known that they must be divided into α equivalence classes of equal cardinality |A|/α

(for a proof see Appendix C). Since τ is chosen uniformly at random, the unlink-
ability of the elements in A is UA(AH4) = log2(|ΠA(AH4)|) bits. Figure 3 shows
the degree of unlinkability DA(AH4) as a function of |A|.

How to obtain this hint: In the setting of mix networks this hint may be
obtained if each of the α users sends exactly one message through the network
in β communication sessions. An adversary that wishes to divide the set of
messages that leave the network (there are α ·β of them) into α subsets of equal
cardinality β, such that each subset contains the messages sent by a single user,

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100 120

de
gr

ee
 o

f u
nl

in
ka

bi
lit

y

number of elements

2 equivalence classes
3 equivalence classes
4 equivalence classes
6 equivalence classes

Fig. 3. Degree of unlinkability DA(AH4) of elements in a set A as a function of |A|, if it
is known that they must be divided into α equivalence classes of equal cardinality |A|/α,
such that each class contains exactly one element from each equivalence class of a given
partition

Attacking Unlinkability: The Importance of Context 7

can construct a reference partition R1, R2, . . . , Rβ by grouping the messages that
leave the network according to communication sessions (i. e. such that, for all
1 ≤ i ≤ β, Ri contains the messages that leave the network in session i). In the
setting of anonymous credential systems, this hint may be obtained if each user
has established exactly one pseudonym with each organisation in the system;
an adversary that controls the organisations knows the reference partition as a
side effect of normal operation. In the setting of secret voting, this hint may be
obtained in special cases, such as the case of a combined election where each
of the α voters is asked to answer β different questions on separate ballots. An
adversary that wishes to divide the set of cast ballots (there are α · β of them)
into α subsets of equal cardinality β, such that each subset contains the ballots
cast by a single user, can construct a reference partition by grouping the ballots
according to the question they correspond to.

3.4 Breach of Privacy: Linking Case

Consider an adversary AH5 with a hint H5 = (L), where the set L consists of
distinct pairs {a1, a2} ⊆ A, and that reveals the fact that, for all {a1, a2} ∈
L, a1 ≡τ a2. Note that |L| ≤ |A|(|A| − 1)/2. AH5 can restrict its attention
to ΠA(AH5) = {P : P � A, ∀{a1, a2} ∈ L, a1 ≡P a2}. That is, the adver-
sary can restrict its attention to those partitions that divide A such that, for
all {a1, a2} ∈ L, a1 and a2 are equivalent. The number of such partitions is
given by

|ΠA(AH5)| = BΦ(A,L) (5)

where Φ(A, L) denotes the number of connected components in the graph (A, L)
with vertices the elements in A and edges the elements in L. For a fixed L,
and since τ is chosen uniformly at random, the unlinkability of the elements
in A is UA(AH5) = log2(|ΠA(AH5)|) bits. If, on the other hand, L is chosen at
random, then the expected value of (5) is given by

E(|ΠA(AH5)|) = E(BΦ(A,L)) =
|A|∑

k=1

Bk Pr(Φ(A, L) = k)

where Pr(Φ(A, L) = k) denotes the probability that the graph (A, L) consists of
exactly k connected components. Figure 4 shows the expected degree of unlink-
ability E(DA(AH5)) = log2(E(BΦ(A,L))/ log2(B|A|) as a function of |A| and |L|,
for the case where the elements in L are selected uniformly at random. Note
that, in this case, the graph (A, L) is a random graph with |L| edges,3 and the
probability Pr(Φ(A, L) = k) depends only on |A| and |L|. Due to lack of an exact
formula for Pr(Φ(A, L) = k) (but see [21,28]), the values shown in the figure are
based on simulation. It is, of course, by no means necessary that the elements
in L are selected uniformly at random; depending on the context and the power
of the adversary, these elements may be selected by some other process that may
lead to a faster or slower decrease in unlinkability.
3 See, for example, [5,23] for a treatment of such graphs.

8 M. Franz, B. Meyer, and A. Pashalidis

number of elementsnumber of privacy
breaches (linking case)

 0

 0.2

 0.4

 0.6

 0.8

 1

degree of unlinkability

 0
 20

 40
 60

 80
 100

 120
 0

 20
 40

 60
 80

 100

degree of unlinkability

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

de
gr

ee
 o

f u
nl

in
ka

bi
lit

y

number of privacy breaches (linking case)

10 elements
20 elements
40 elements
60 elements
80 elements

100 elements

Fig. 4. Expected degree of unlinkability E(DA(AH5)) as a function of the number of
elements |A| and the number of privacy breaches (linking case) |L|. The elements in L
are selected uniformly at random.

How to obtain this hint: Each element {a1, a2} ∈ L can be seen as a privacy
breach that tells the adversary that a1 and a2 are linked. In the setting of mix
networks, a1 and a2 could be messages that leave the network; an adversary can
link them based on e. g. their content or recipient. In the setting of anonymous
credential systems, a1 and a2 could be transactions; an adversary can link them
based on contextual information such as credential type [31], timing, location,
or an identical piece of information that is attached to both transactions, e. g. a
telephone number or an email address. In the setting of a combined election, a1
and a2 could be ballots; an adversary can link them based, for example, on the
handwriting they may contain.

3.5 Breach of Privacy: Unlinking Case

Consider an adversary AH6 with a hint H6 = (U), where the set U consists of
distinct pairs {a1, a2} ⊆ A, and that reveals the fact that, for all {a1, a2} ∈ U ,
a1 �≡τ a2. Note that |U | ≤ |A| · (|A| − 1)/2. AH6 can restrict its attention to
ΠA(AH6) = {P : P � A, ∀{a1, a2} ∈ U, a1 �≡P a2}. That is, the adversary
can restrict its attention to those partitions that divide A such that, for all
{a1, a2} ∈ U , a1 and a2 are in different equivalence classes. The number of such
partitions is given by

|ΠA(AH6)| =
∑

U ′⊆U

(−1)|U
′|BΦ(A,U ′) (6)

where Φ(A, U ′) denotes the number of connected components in the graph (A, U ′)
with vertices the elements in A and edges the elements in U ′ (for a proof see
Appendix D). For a fixed U , and since τ is chosen uniformly at random, the
unlinkability of the elements in A is UA(AH6) = log2(|ΠA(AH6)|) bits. If, on

Attacking Unlinkability: The Importance of Context 9

the other hand, U is selected at random, the expected value of (6), for a given
number n of elements in U , is given by

E(|ΠA(AH6)|) =
∑

U⊆Z
|U|=n

Pr(U)
∑

U ′⊆U

(−1)|U
′|BΦ(A,U ′) (7)

where Z denotes the set of all distinct pairs {a1, a2} ⊆ A and Pr(U) denotes the
probability that U is selected. Figure 5 shows the expected degree of unlinkability
E(DA(AH6)) = log2 E(|ΠA(AH6)|)/ log2(B|A|) as a function of |A| and |U |, for
the case where the elements in U are selected uniformly at random.4 It is, of
course, by no means necessary that the elements in U are selected uniformly
at random; depending on the context and the power of the adversary, these
elements may be selected by some other process that may lead to a faster or
slower decrease in unlinkability.

 2
 3

 4
 5

 6
 7

 8
 9

 10

 0 5 10 15 20 25

 0

 0.2

 0.4

 0.6

 0.8

 1

degree of unlinkability

number of elements

number of privacy breaches (unlinking case)

degree of unlinkability

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

de
gr

ee
 o

f u
nl

in
ka

bi
lit

y

number of privacy breaches (unlinking case)

2 elements
4 elements
6 elements
8 elements

10 elements

Fig. 5. Expected degree of unlinkability E(DA(AH6)) as a function of the number of
elements |A| and the number of privacy breaches (unlinking case) |U |. The elements in
U are selected uniformly at random.

How to obtain this hint: Each element {a1, a2} ∈ U can be seen as a privacy
breach that tells the adversary that a1 and a2 are not linked. In the setting of mix
networks, a1 and a2 could be messages that enter the network; an adversary can
unlink them based on e. g. their content or sender. In the setting of anonymous
credential systems, a1 and a2 could be transactions; an adversary can unlink
them based on contextual information such as credential type,timing, location,
or a piece of information that is attached to both transactions, e. g. two differing
telephone numbers or email addresses. In the setting of a combined election, a1
and a2 could be ballots; an adversary can unlink them based, for example, on
the handwriting they may contain.

Example: Let us briefly revisit the example from Section 2 at this point. Since
the clerk knows that the calls λ1 and λ2 were made by men, and the calls λ3

4 Since evaluating (7) takes time exponential in |U |, the results shown in Figure 5
were obtained by simulation.

10 M. Franz, B. Meyer, and A. Pashalidis

and λ4 by women, he can effectively unlink λ1 and λ2 from λ3 and λ4. That
is, he has a hint H6 = (U) = ({(λ1, λ3), (λ1, λ4), (λ2, λ3), (λ2, λ4)}). In order to
evaluate (6) the value of Φ(A, U ′) must be determined for each subset U ′ ⊂ U .
In this example, we have

– the case where U ′ = U and Φ(A, U ′) = 1,
– four cases where |U ′| = 3 and Φ(A, U ′) = 1,
– six cases where |U ′| = 2 and Φ(A, U ′) = 2,
– four cases where |U ′| = 1 and Φ(A, U ′) = 3, and
– the case where U ′ = ∅ and Φ(A, ∅) = 4.

That is, (6) evaluates to B1 − 4B1 + 6B2 − 4B3 + B4 = 1 − 4+ 12− 20+15 = 4,
which coincides with the result from the elementary approach in Section 2.

3.6 Breach of Privacy: Combined Case

Consider an oracle which answers questions of the form ‘are the elements (a1, a2)
linked?’ by either ‘yes’ or ‘no’, depending on whether a1 ≡τ a2 or a1 �≡τ a2. An
adversary AH7 with access to such an oracle obtains, in effect, a hint H7 = (L, U),
where L and U are as described above. Note that L∩U = ∅ and |L|+ |U | ≤ |A| ·
(|A|−1)/2. AH7 can restrict its attention to ΠA(AH7) = {P : P � A, ∀{a1, a2} ∈
L, a1 ≡P a2 ∧ ∀{a1, a2} ∈ U, a1 �≡P a2}, i. e. to those partitions that divide A
such that, for all {a1, a2} ∈ L, a1 and a2 are equivalent and, for all {a1, a2} ∈ U ,
a1 and a2 are not equivalent. The number of such partitions is given by

|ΠA(AH7)| =
∑

U ′⊆Ũ

(−1)|U
′|BΦ(Ã,U ′) (8)

where Ã denotes the set of components of the graph (A, L), the set of edges Ũ
contains the edge {c1, c2}, where c1, c2 ∈ Ã and c1 �= c2, if and only if U contains
a pair {a1, a2} such that either (a1 ∈ c1 and a2 ∈ c2), or (a1 ∈ c2 and a2 ∈ c1),
and Φ(Ã, U ′) denotes the number of components in the the graph (Ã, U ′) with
vertices the elements in Ã and edges the elements in U ′. In effect, the difference
between equations (6) and (8) lies in the fact that the latter operates on a
quotient graph — induced by L — of the graph on which the former operates.

For a fixed set of oracle calls, i. e. a fixed L and U , and since τ is chosen
uniformly at random, the unlinkability of the elements in A is UA(AH7) =
log2(|ΠA(AH7)|) bits. If, on the other hand, τ and the oracle calls are selected
at random, the expected value of (8), if exactly n = |L| + |U | oracle calls are
made, is given by

E(|ΠA(AH7)|) =
∑

L,U⊆Z
|L|+|U|=n

Pr(L ∧ U)
∑

U ′⊆Ũ

(−1)|U
′|BΦ(Ã,U ′) (9)

where Z denotes the set of all distinct pairs {a1, a2} ⊆ A and Pr(L∧U) denotes
the probability of selecting τ and oracle calls such that L and U are the results

Attacking Unlinkability: The Importance of Context 11

of the oracle’s answers. Figure 6 shows the expected degree of unlinkability
E(DA(AH7)) = log2 E(|ΠA(AH7)|)/ log2(B|A|) as a function of |A| and |L ∪ U |,
for the case where τ and the elements in L∪U are selected uniformly at random.5

It is, of course, by no means necessary that τ and the elements in L ∪ U are
selected uniformly at random; depending on the context and the power of the
adversary, these elements may be selected by some other process that may lead
to a faster or slower decrease in unlinkability.

 2
 3

 4
 5

 6
 7

 8
 9

 10

 0
 5

 10
 15

 20

 0

 0.2

 0.4

 0.6

 0.8

 1

degree of unlinkability

number of elements

number of privacy breaches

degree of unlinkability

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

de
gr

ee
 o

f u
nl

in
ka

bi
lit

y

number of privacy breaches

2 elements
4 elements
6 elements
8 elements

10 elements

Fig. 6. Expected degree of unlinkability E(DA(AH7)) as a function of the number of
elements |A| and the number of privacy breaches |L ∪ U |. The target partition τ and
the elements in L ∪ U are selected uniformly at random.

How to obtain this hint: See sections 3.4 and 3.5.

4 Conclusion

In this paper, we considered the setting of a system that protects the unlinkability
of certain elements of interest, and an adversary with the goal to nevertheless
link these elements. We studied how a number of contextual hints, if disclosed
to the adversary, affect its ability to link the elements. We conclude that an ad-
versary that knows only the number or the cardinality of the equivalence classes
that the elements must be divided into (or a ‘reference partition’ as described in
Section 3.3), is, in most cases, unable to link the elements with certainty. How-
ever, as Figures 1, 2, and 3 demonstrate, such knowledge nevertheless reduces
the degree of unlinkability of the elements to a significant extent.

By contrast, an adversary that breaches privacy by linking and/or by un-
linking pairs of elements, is able to identify the target partition (i.e. uniquely
link all elements) after a certain number of breaches have occurred. However, if
the adversary is limited to linking (resp. unlinking), then this required number
of privacy breaches can occur only in the extreme case where all elements are
equivalent (resp. if each element constitutes a separate equivalence class) in the
5 Since evaluating (9) takes time exponential in |U |, the results shown in Figure 6

were obtained by simulation.

12 M. Franz, B. Meyer, and A. Pashalidis

target partition. Figures 4, 5, and 6 demonstrate the significance of such breaches
in an ‘average’ case, i.e. in the case where randomly selected pairs are linked or
unlinked. Note that linking (Figure 4) has a significantly more dramatic effect
on unlinkability compared to unlinking (Figure 5). This however, is not surpris-
ing, since ‘belonging to the same equivalence class’ is a transitive relation, while
‘belonging to different equivalence classes’ is not.

Finally, note that the list of hints studied in this paper is by no means ex-
haustive and that some types of hint may be of more practical relevance than
others. Identifying other, practical types of hint that help an adversary to link
otherwise unlinkable elements, and studying their effect on unlinkability, is a
direction for further research.

Acknowledgements

The authors would like to thank Michael Braun for his insightful suggestions,
and Svante Janson for his pointers to some of the literature on random graphs.

References

1. Adida, B.: Advances in cryptographic voting systems. PhD thesis, Massachusetts
Institute of Technology (2006)

2. Agrawal, D., Kesdogan, D., Penz, S.: Probabilistic treatment of mixes to hamper
traffic analysis. In: 2003 IEEE Symposium on Security and Privacy (S&P 2003),
Berkeley, CA, May 11-14, 2003, pp. 16–27. IEEE Computer Society, Los Alamitos
(2003)

3. Bell, E.T.: Exponential numbers. American Mathematical Monthly 41, 411–419
(1934)

4. Berthold, O., Federrath, H., Köpsell, S.: Web mixes: A system for anonymous and
unobservable internet access. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 115–129. Springer, Heidelberg (2001)

5. Bollobás, B.: Random Graphs. In: Cambridge Studies in Advanced Mathematics,
2nd edn., vol. 73, Cambridge University Press, Cambridge (2001)

6. Boneh, D., Golle, P.: Almost entirely correct mixing with applications to voting.
In: Atluri, V. (ed.) Proc. of the 9th ACM Conference on Computer and Commu-
nications Security, pp. 68–77. ACM Press, New York (2002)

7. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

8. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004)

9. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 24(2), 84–90 (1981)

10. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Communications of the ACM 28(10), 1030–1044 (1985)

Attacking Unlinkability: The Importance of Context 13

11. Chaum, D.: Showing credentials without identification: transferring signatures bet-
ween unconditionally unlinkable pseudonyms. In: Seberry, J., Pieprzyk, J.P. (eds.)
AUSCRYPT 1990. LNCS, vol. 453, pp. 246–264. Springer, Heidelberg (1990)

12. Chen, L.: Access with pseudonyms. In: Dawson, E., Golic, J.D. (eds.) Cryptogra-
phy: Policy and Algorithms. LNCS, vol. 1029, pp. 232–243. Springer, Heidelberg
(1996)

13. Chen, L., Enzmann, M., Sadeghi, A.-R., Schneider, M., Steiner, M.: A privacy-
protecting coupon system. In: Patrick, A.S., Yung, M. (eds.) FC 2005. LNCS,
vol. 3570, pp. 93–108. Springer, Heidelberg (2005)

14. Damg̊ard, I.: Payment systems and credential mechanisms with provable secu-
rity against abuse by individuals. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 328–335. Springer, Heidelberg (1990)

15. Danezis, G., Serjantov, A.: Statistical disclosure or intersection attacks on
anonymity systems. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 293–308.
Springer, Heidelberg (2004)

16. Dı́az, C., Preneel, B.: Reasoning about the anonymity provided by pool mixes
that generate dummy traffic. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp.
309–325. Springer, Heidelberg (2004)

17. Dı́az, C., Preneel, B.: Security, Privacy and Trust in Modern Data Management,
chapter Accountable Anonymous Communication. Springer, Berlin, 2006 (in print)

18. Dı́az, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In:
Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68.
Springer, Heidelberg (2003)

19. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium, August 9-13,
2004, San Diego, CA, USA, USENIX, pp. 303–320 (2004)

20. Douceur, J.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

21. Erdös, P., Rényi, A.: On random graphs I. Publicationes Mathematicae Debrecen 6,
290–297 (1959)

22. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation
for Computer Science. ch. 6.1, 2nd edn., pp. 257–267. Addison-Wesley, Reading
(1994)

23. Janson, S., �Luczak, T., Ruciński, A.: Random Graphs. In: Interscience Series in Dis-
crete Mathematics and Optimization, John Wiley & Sons, Inc., Chichester (2000)

24. Kagan, D.: The origin and purposes of ostracism. Hesperia 30(4), 393–401 (1961)
25. Kesdogan, D., Agrawal, D., Penz, S.: Limits of anonymity in open environments. In:

Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 53–69. Springer, Heidelberg
(2003)

26. Kesdogan, D., Egner, J., Büschkes, R.: Stop-and-go-mixes providing probabilistic
anonymity in an open system. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525,
pp. 83–98. Springer, Heidelberg (1998)

27. Klonowski, M., Kutylowski, M.: Provable anonymity for networks of mixes. In:
Barni, M., Herrera-Joancomart́ı, J., Katzenbeisser, S., Pérez-González, F. (eds.)
IH 2005. LNCS, vol. 3727, pp. 26–38. Springer, Heidelberg (2005)

28. Ling, R.F.: The expected number of components in random linear graphs. The
Annals of Probability 1(5), 876–881 (1973)

29. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer,
Heidelberg (2000)

14 M. Franz, B. Meyer, and A. Pashalidis

30. Mathewson, N., Dingledine, R.: Practical traffic analysis: Extending and resist-
ing statistical disclosure. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS,
vol. 3424, pp. 17–34. Springer, Heidelberg (2005)

31. Pashalidis, A., Meyer, B.: Linking anonymous transactions: The consistent view
attack. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 384–392.
Springer, Heidelberg (2006)

32. Persiano, G., Visconti, I.: An efficient and usable multi-show non-transferable
anonymous credential system. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp.
196–211. Springer, Heidelberg (2004)

33. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for Web transactions. ACM Trans-
actions on Information and System Security 1(1), 66–92 (1998)

34. Rennhard, M., Plattner, B.: Introducing morphmix: peer-to-peer based anonymous
internet usage with collusion detection. In: Jajodia, S., Samarati, P. (eds.) Proceed-
ings of the 2002 ACM Workshop on Privacy in the Electronic Society, WPES 2002,
Washington, DC, USA, November 21, 2002, pp. 91–102. ACM, New York (2002)

35. Rota, G.C.: The number of partitions of a set. American Mathematical Monthly 71,
498–504 (1964)

36. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity.
In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53.
Springer, Heidelberg (2003)

37. Steinbrecher, S., Köpsell, S.: Modelling unlinkability. In: Dingledine, R. (ed.) PET
2003. LNCS, vol. 2760, pp. 32–47. Springer, Heidelberg (2003)

38. Verheul, E.R.: Self-blindable credential certificates from the Weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 533–551. Springer, Heidelberg
(2001)

A Counterexample to the Theorem in [37]

Theorem 1 in [37] claims that it cannot be reached that, for all arbitrarily chosen
pairs {a1, a2} ⊆ A, Pr(a1 ≡τ a2) = Pr(a1 �≡τ a2) = 1/2, from the point of view
of AH2 .

6 This is wrong as the claim does not hold, for example, if |A| = 4 and
H2 = (1, 3). We remark that, more generally, the claim does not hold for all
solutions of the system of equations

∑

β∈H2

β = |A|,
∑

β∈H2

β2 =
|A|2 + |A|

2
.

B Proof of (2) and (3)

Consider the task of dividing the elements in a set A into α subsets such that,
for all 1 ≤ i ≤ α, the ith subset contains exactly βi elements. One can perform
this task by first ordering the elements in A, and then putting the first β1
elements into the first subset, the next β2 elements into the second subset, and
so on. If one performs this task for all |A|! orderings of A, one ends up with only
|A|!/(β1! ·β2! · · ·βα!) different outcomes, because permuting the elements in each

6 The claim has been rephrased in order to fit our notation.

Attacking Unlinkability: The Importance of Context 15

subset does not make a difference. Moreover, since the equivalence classes of a
partition are not ordered, i.e. one can permute the equivalence classes of the
same size without changing the partition, the number of distinct partitions that
divide A into α subsets of cardinality β1, β2, . . . , βα, is given by (2). Equation (3)
follows as a special case. ��

C Proof of (4)

Consider a set A, a partition {R1, R2, . . . , Rβ} � A that divides A into β =
|A|/α subsets of equal cardinality α, and the task of dividing A into α sub-
sets of equal cardinality β, such that each subset contains exactly one element
from R1, R2, . . . , Rβ. For ease of presentation, assume that, for all 1 ≤ i ≤ β,
there exists an ordering on the elements in Ri. Then one can perform this task by
grouping the first element in each of R1, R2, . . . , Rβ into Q1, the second element
in each of R1, R2, . . . , Rβ into Q2, and so on. By doing this, one ends up with a
partition {Q1, Q2, . . . , Qα} � A that meets the requirements.

It is possible to construct another partition {Q1, Q2, . . . , Qα} � A that meets
the requirements by permuting the elements in R1, R2, . . . , Rβ and then repeat-
ing the above procedure. Indeed, one can construct all partitions that meet the
requirements by repeating the above procedure for all combinations of permuta-
tions of the elements in R1, R2, . . . , Rβ . If one does this for all such combinations,
of which there exist κ = |R1|! · |R2|! · · · |Rβ |! = (α!)β , each of the resulting κ par-
titions will appear exactly α! times, namely once for each permutation of the
sets Q1, Q2, . . . , Qα. Thus, the number of distinct partitions that divide A into α
subsets of equal cardinality β, such that each subset contains exactly one ele-
ment from R1, R2, . . . , Rβ , is given by (4). ��

D Proof of (6)

Let (A, U) be a graph, and let X(A, U) be the number of partitions of A such
that each edge e ∈ U connects two vertices in the same equivalence class, and
Ψ(A, U) the number of partitions such that no edge connects two vertices in the
same equivalence class. We know from (5) that

X(A, U) = BΦ(A,U),

where Φ(A, U) denotes the number of connected components of (A, U) and Bn

the n-th Bell number, i.e., the number of partitions of a set with n elements,
see (1).

For a partition π � A and an edge e ∈ U set fe(π) = 1 if the vertices connected
by e lie in the same equivalence class of π, and fe(π) = 0 otherwise. Clearly,

X(A, U) =
∑

π�A

∏

e∈U

fe(π)

16 M. Franz, B. Meyer, and A. Pashalidis

because the product evaluates to 1 unless an edge connects two different equi-
valence classes, in which case it does not contribute to the sum. Similarly,

Ψ(A, U) =
∑

π�A

∏

e∈U

(
1 − fe(π)

)

=
∑

U ′⊆U

(−1)|U
′| ∑

π�A

∏

e∈U ′

fe(π)

=
∑

U ′⊆U

(−1)|U
′|X(A, U ′),

as was to be shown. ��

A Fresh Look at the Generalised Mix Framework

Andrei Serjantov

The Free Haven Project
schnur@gmail.com

Abstract. Anonymity systems designed to handle anonymous email
have been implemented with a variety of different mixes. Although many
of their properties have been analysed in previous work, some are still
not well understood and many results are still missing.

In this paper we reexamine the generalised mix framework and the
binomial mix of [7]. We show that under some parameterizations the
binomial mix has undesirable properties. More specifically, for any con-
stant parameterization of the binomial mix, there is a minimum number
of messages beyond which it acts as a timed mix. In this case the num-
ber of messages inside it is no longer hidden from the adversary and the
mix is vulnerable to easy active attack. We suggest ways to avoid this
in the generalised mix framework. Secondly, we show that the binomial
distribution used in the framework produces distribution of pool sizes
with low variance and show how to improve on this.

Finally, we present a technique from queueing theory which allows us
to analyse this property for a class of mixes assuming Poisson message
arrivals.

1 Introduction

Anonymous email systems are commonly implemented using mixes [2]. To provide
anonymity a mix has to follow a cryptographic protocol which ensures bitwise un-
linkability to prevent attackers linking messages based on their bit patterns and a
batching or reordering strategy to prevent timing attacks, i.e. adversaries linking
messages by simply watching them coming in and out of the mix.

In this paper we consider batching strategies of mixes used in real message-
based anonymity systems such as Mixmaster and Mixminion. In the remailer
community which runs these systems there is an ongoing debate about the prop-
erties of different batching strategies; we hope this work not only contributes to
this debate, but also helps influence the design of deployed systems and hence
improve the anonymity properties for their users. We start off by describing what
is perhaps the most sophisticated mix to date, the binomial mix.

The binomial mix has been proposed in [7] and further analysed in [4]. The
batching strategy of this mix is as follows: if the mix contains M messages, then
the number of messages to be forwarded on to their next hops (or destinations)
is determined by the number of heads obtained from tossing a biased coin for
each message. The bias of the coin is obtained from the function g(M) which is
the cumulative normal distribution function.

N. Borisov and P. Golle (Eds.): PET 2007, LNCS 4776, pp. 17–29, 2007.

18 A. Serjantov

The rest of the paper is organized as follows: first we review the generalised
mix framework. Then we look at the expected number of messages to be kept in
the pool as a function of the number of messages in the mix for some existing
mixes. We find that as the number of messages in the existing binomial mix
increases, the expected size of the pool approaches zero and argue that this
is undesirable. Another consequence of this is that the binomial mix loses its
desirable property of hiding the number of messages inside it at high traffic
volume. We then show that by altering the g(M) function and the distribution
from which the number of messages to be forwarded is drawn we can alter the
expected size of the pool mix and its variance and hence retain the desirable
properties of the binomial mix at high traffic volumes. Finally, we turn our
attention to the distribution of the number of messages in the mix. We present
a technique which allows us to calculate the distribution of messages inside the
Stop and Go mix and to slight variants of the timed dynamic pool mix and the
binomial mix assuming message arrivals are Poisson distributed.

2 The Generalised Mix Framework

The generalised mix framework and the binomial mix have evolved from the
pool and the timed dynamic pool mixes [12]. The framework introduced two
innovations: unlike in the case of the pool mixes where the number of messages
to be forwarded is deterministic, it is now a random variable chosen from the
binomial distribution1, Bin(M, g(M)). The expectation of this random variable
is determined by a function g of the number of messages in the mix. Before we
proceed, let us set up the terminology explicitly.

– M is the number of messages in the mix at the start of the round
– X is the number of messages retained in the mix
– P = g(M) where g : [0, ∞) → [0, 1] is the probability of forwarding each

message

Hence a mix is specified almost entirely2 by the function g(M). Whilst this
is enough to express the mix strategy in a concise manner, we argue that it is
more insightful to look at P (X = x|M), the conditional distribution of the num-
ber of messages retained in the pool and its expectation and variance. Clearly,
the number of messages which stay in the mix follows a binomial distribution
Bin(M, 1 − g(M)).

P (X = x|M) =
(

M
x

)
g(M)(1−x)(1 − g(M))x

E[P (X = x|M)] = M(1 − g(M))

1 Hence in most cases the attacker cannot tell with certainty how many messages are
in the mix [7], but note [10].

2 The only remaining parameter is t, how often the mix flushes.

A Fresh Look at the Generalised Mix Framework 19

Var[P (X = x|M)] = Mg(M)(1 − g(M))

We now proceed to look closely at the expectation of the size of the pool in
various existing mixes3 defined in the generalised mix framework, i.e. via g(M)
and compare their properties.

3 Expected Pool Size of Various Mixes

We start by comparing the relatively simple mixes from [12] which were further
analysed in [10,11].

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Binomial const σ
Timed Dynamic Pool
Pool

Fig. 1. The function g(M) for some existing mixes

3.1 Timed Pool Mix

This mix always keeps n messages and outputs M − n. Note that although it is
impossible to express exactly this behaviour in the binomial mix framework, it
will suffice that the expected number of retained messages is n. See Figures 1
and 2 for a graphical representation of the properties of existing mixes.

gp(M) =

{
0 if M ≤ n
M−n

M otherwise

P (X = x|M) =

{
0 if M ≤ n

M − n otherwise

3 More precisely, their randomized versions.

20 A. Serjantov

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

Pool
Binomial const
Timed Dynamic Pool

Fig. 2. Size of the pool as a function of messages in the mix

3.2 Timed Dynamic Pool Mix

This mix always keeps fM (where f < 1) messages, hence gdp(M) = f and
outputs (1 − f)M . Sometimes a certain minimum is also specified, but this
should be designed to act only very rarely in exceptional circumstance without
changing the overall behaviour. Again, we have to make do with this being the
expected number of messages output in our generalised framework. This clearly
shows that the pool grows linearly with the number of messages in the mix. See
Figures 1 and 2.

Clearly, the existing pool mixes define the limiting cases – a constant and
a linear function. Let us now look at the binomial mix and see how it can be
parameterized to behave as either of these.

4 The Binomial Mix

As mentioned above, the weight of the biased coin in the case of the binomial mix
is determined from a cumulative distribution function of the normal distribution.
The question that has not been addressed in the literature so far is which normal
distribution. A normal distribution is uniquely defined by its mean and variance,
N(μ, σ) hence the g(M) of the binomial mix is as follows.

g(M, μ, σ) =
∫ M

−∞

1√
2πσ

e−
(M−μ)2

2σ2

Up to now it has been implicitly assumed that in g(M, μ, σ) μ and σ are
independent of M (simply constants).

The function does not have a closed form representation; we illustrate func-
tions with σ = 100, σ = 0.3M, σ = 0.5M, σ = M . The difference between these

A Fresh Look at the Generalised Mix Framework 21

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Binomial σ = const

Binomial σ = 0.3M

Binomial σ = 0.5M

Binomial σ = M

Fig. 3. Different parameterizations of the cumulative normal distribution function

may not seem significant, however, it is clearer when we examine the expected
pool size as a function of M . This is illustrated in Figure 4.

Clearly, a binomial mix with a constant σ parameter limM→∞ E[P (X |M)] = 0
approaches zero very quickly – the normal distribution has very thin tails. Hence
at large M the constant-σ mix has turned into a simple timed mix. This is clearly
undesirable: such a mix can be flushed in one round given a sufficiently high
number of messages and hence admits an easy active attack [12].

The binomial parameterizations where σ is linear in M are much better. First,
they retain the property of having a quickly increasing pool for small values of M ,
this can be adjusted via the μ parameter of the cumulative normal distribution
function and behave like the timed dynamic mix at large values of M – linear
pool size growth.

It is interesting to note that there are several alternatives, also expressed in the
binomial mix framework. Hence below we present 3 mixes with 3 different prop-
erties: E[P (X |M)] approaching a non-zero constant (though this hardly helps
with the active attack, the g(M) function is simple and analytically tractable);
logarithmic or square root growth. We show that in terms of the generalised mix
definition they look quite similar, hence looking at the growth of the size of the
pool has been an insightful exercise.

Properties of the new mixes are shown in Figure 5. Because the mixes are all
expressed in the generalised framework, their anonymity and delay properties
(although not in closed form) follow directly from [7,4,5]; we do not restate
them here.

22 A. Serjantov

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

Pool
Binomial const
Binomial 0.3M
Binomial 0.5M
Binomial M
Timed Dynamic Pool

Fig. 4. Expected pool size for existing mixes and various parameterizations of the
binomial mix

4.1 Binomial+ Mix

First we try to find a mix which is similar to the binomial mix, but can be
adapted so that limM→∞ P (M) = n, i.e. it has a pool of at least n messages.
We find the following function to be suitable:

g(M) = 1 − (M − n)e−kM + n

M

E[P (X |M)] = (M − n)e−kM + n

Figure 5 uses k = 0.01. Indeed, E[P (X |M)] has a similar shape to that of the
binomial mix.

4.2 Logarithmic and Square Root Mixes

If we seek to have slow growth of the pool size, we can have a logarithmic or
a square root function for E[P (X |M)] and hence have glog(M) = 1 − log(M)

M
and gsqrt(M)) = 1 − 1√

(M)
. Their behaviour is shown in Figure 5. A practical

implementation may have lower bound on the size of the pool in either case;
here we are concerned with the asymptotic properties only. Clearly, these mixes
have higher expected delay but also higher anonymity.

A Fresh Look at the Generalised Mix Framework 23

0 50 100 150 200 250 300 350 400
−0.2

0

0.2

0.4

0.6

0.8

1

Binomial
Binomial+
Logarithmic
Square Root

Fig. 5. The function g(M) for some new mixes

5 Distribution of the Number of Messages to Forward

One of the benefits of introducing the binomial framework as presented in [7]
is the fact that the binomial mix hides the number of messages inside it which
makes it (slightly) more difficult to mount a blending attack on it4. And yet
the obvious parameterization implies that (as the authors of the original paper
conjecture) by sending a sufficiently high number of messages during a single
round, all messages can be flushed from the mix with a high probability. Making
this more precise, the probability of having a message retained in the mix is:

P (X ≥ 1|M) = 1 − (g(M))M

It is evident that this probability approaches 1 for the Logarithmic, the Square
root and the Binomial+ mixes, and hence it is impossible to flush the mix in a
single round and mount an easy active attack. What is less obvious (due to the
lack of closed form representation of g(M)) is that this probability asymptotically
approaches 0 for the binomial mix with constant σ5. Clearly, as we have seen
above, this is not the case when σ is a function of M .

Attacking the same problem from a slightly different angle, if we examine the
variance of the distribution P (X |M), we find that while the variance for the
number of messages sent out by the constant-σ binomial mix approaches zero
with increasing M , it increases in the case of the other mixes. The expectation
E[P (X |M)] and values of one standard deviation around it for the Binomial with
constant σ, Binomial with σ = 0.5M are shown in Figure 6.
4 For a thorough analysis of similar issues for the existing mixes see [10].
5 The reader is invited to verify this either by analytical or empirical means.

24 A. Serjantov

0 50 100 150 200 250 300 350 400
−20

0

20

40

60

80

100

120

Binomial
Binomial σ = 0.5 M
TDPM, Uniform

Fig. 6. Comparing Expectations and Standard Deviations of Pool Size

It is also clear that the variance of the pool size in the other mixes does not
grow significantly as M increases. This naturally suggests a rethink of the gen-
eralised mix framework; instead of specifying g(M), the mix should be defined
by the probability distribution of the number of messages to be forwarded given
the number of messages in the pool, P (X = x|M), with x ∈ {0 . . .M}6. We
have already seen the case where P (X = x|M) = Bin(M, 1 − g(M)), however
there are many alternatives: the Hypergeometric distribution, the Uniform dis-
tribution, the Maximum Entropy Distribution which we describe further below
or (the inelegant) discretized versions of the scaled Beta or the Normal distribu-
tions. Note, however, that from above we already have good candidates for the
expectation of such distributions, namely the linear σ binomial, square root or
logarithmic mix g(M) functions.

We do not delve into the question of distributions too deeply, but show by
example that the difference in the variance of the pool size is substantial and
present the maximum entropy distribution which maximizes variance. We con-
jecture that such a distribution is optimal at hiding the number of messages in
the mix.

Example 1. In this paper we described a version of the timed dynamic pool mix
which had

[P (X |M)] = 0.5M

6 Given X, we construct a random permutation of messages and forward the first X.

A Fresh Look at the Generalised Mix Framework 25

P (X = x|M) =
(

M

x

)
f (1−x)(1 − f)x

Instead, we could have a timed dynamic pool mix with the same [P (X |M)] =
0.5M but P (X = x|M) = Uniform[0, M]. The expectation value and the values
one standard deviation away from it of such a timed dynamic pool mix are also
shown on Figure 6.

The variance of the uniform distribution is (M+1)2−1
12 which is greater than that

of the binomial distribution, M/4. Note that given a set of values {0 . . .M}, and
a given expected value μ the maximum entropy distribution is of the following
form:

P (X = x) = Crx

Using the facts that the sum of the probabilities equals 1 and the expectation
equals μ allows us to determine the values for constants C and r. For example, if
we have 100 messages in the mix, we may flush between zero and 100. We wish
to use the maximum entropy distribution to determine how many should be
flushed, with the expected number set at 20 messages. Using numerical methods
to obtain C and r, we find that the distribution to use is as follows:

P (X = x) = 1.58342(−0.986546)x

Naturally, if μ = M/2, the maximum entropy distribution is simply the uni-
form distribution.

6 Distribution of the Number of Messages in Mixes

The number of messages inside simple mixes during operation is well understood.
For example, the threshold mix contains no more than N messages, the timed
mix contains quite simply all the messages which have arrived since the last
flush, the timed pool mix contains all the messages which have arrived since the
last flush plus n, the size of the pool. For more complex mixes, this number or
rather, the distribution of the number of messages inside the mix is not so clear.
Yet a mix can only store a finite number of messages, so this distribution needs
to be understood in order to minimize the probability of a message having to
be dropped. This, in part, has originally motivated the choice of g(M) of the
binomial mix which makes it behave as a simple timed mix at high loads.

In the first part of this paper we showed that both the timed dynamic pool
mix and the improved parameterization of the binomial mix retain a constant
fraction of messages – they both have the property that limM→∞g(M) = c for
c < 1. In this section we present a method for determining the distribution of
the number of messages inside various mixes, in particular the Timed Dynamic
Pool Mix. Such a method allows us to to determine the probability of the mix
running out of space and hence select a suitable parameterization to avoid this.

First, we consider Stop and Go Mix introduced by Kesdogan in [9]. It delays
each message individually by an amount picked from an exponential distribution.

26 A. Serjantov

Assuming Poisson distribution of message arrivals, we can model it as an M/M/n
process and use standard queuing theory techniques [3] as we informally outline
below.

We proceed by denoting a mix as an n-state system where n − 1 is the max-
imum possible number of messages in the mix. We assume message arrivals are
distributed with a Poisson distribution with parameter λ and the time between
flushes is distributed exponentially with parameter μ. The system changes state
when either one message arrives (with probability λ) or one message leaves (with
probability μ). For example, take a mix which can hold a maximum of three mes-
sages. The rates of transitions between states 0 to 3 (0,1,2 or 3 messages inside
the mix) are as follows:

Asg =

⎛

⎜⎜⎝

−λ μ 0 0
λ −(λ + μ) μ 0
0 λ −(μ + λ) μ
0 0 λ −μ

⎞

⎟⎟⎠

The rows represents the state of the mix. We see that the rate of transition
out of state 0 and into to state 1 is λ – this is the probability that a message
arrives at the mix. Similarly, the rate of transition into state 0 from state 1 is μ.
Reading row 2, the rate of transition into state 1 is λ from state 0, μ from state
3 and −(λ + μ) to account for the probabilities of a message arriving or leaving
while the mix is in state 2.

Now, we seek a vector of probabilities P such that the system is in equilibrium,
i.e. there is no net inflow or outflow from each state. Our last constraint is that
the probabilities sum to 1. We now solve the system of linear equations AP = 0
together with

∑
P = 1 and obtain P , the probabilities of finding the system in

each state. For instance, when λ = 1/3 and μ = 1/2, the distribution of messages
in the 4 state mix defined above is: [0.4154, 0.2769, 0.1846, 0.1231].

The same technique can be used directly for a mix with exponential inter-
flush times but which, like the timed dynamic pool mix, flushes deterministic
batches of messages. The transition matrix for this mix (f = 0.5) differs from
the one above only by the position of the μ in the right hand column – the mix
transitions from having 3 messages inside it to having 1.

Atdpm =

⎛

⎜⎜⎝

−λ μ 0 0
λ −(λ + μ) μ μ
0 λ −(μ + λ) 0
0 0 λ −μ

⎞

⎟⎟⎠

The vector of probabilities is now [0.4737, 0.3158, 0.1263, 0.0842]. The proba-
bilities of high states are lower because more messages get forwarded on some of
the flushes, hence fewer remains in the mix. As a further example of the capabil-
ities of this technique, we calculated the distribution of the number of messages
inside a pool and a timed dynamic pool mixes, each with maximum capacity 100
messages. These are illustrated in Figure 7.

A Fresh Look at the Generalised Mix Framework 27

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Pool Mix
Timed Dynamic Pool Mix

Fig. 7. Distributions of the number of messages inside mixes. λ = 5, μ = 0.5

This technique is efficient and allows us to calculate the probability distribu-
tion of the number of messages inside mixes with arbitrary P (X = x|M) with
exponential inter-flush times in an environment with Poisson-distributed inter-
arrival times. Hence a slight modification of the binomial mix with exponential
inter-flush times falls into this category and can now be analysed.

More advanced queueing theory tools are needed to consider other known
mixes. To be more precise, mixes with Poisson arrivals and arbitrary distribu-
tions of inter-flush times can be described by a M/G/n model and those with
deterministic inter-flush times (for instance Pool or Timed Dynamic Pool mixes)
fit the M/D/s model. The interested reader is invited to refer to [3].

In this section we assumed that message inter-arrival times are Poisson dis-
tributed. To the best of our knowledge, the only work investigating the issue
is [6]; there the authors find a large structural break in their data sample. We
briefly reexamined the same data and looking at shorter time horizons we find
the distribution broadly Poisson; though a full empirical investigation of inter-
arrival times is long overdue we do not consider the issue here. From the the-
oretical point of view, the number of messages inside a mix which forwards a
constant fraction of messages (such as the linear-σ binomial or the timed dynamic
pool mix) follows a mean reverting Ornstein-Uhlenberg stochastic process with
non-Gaussian increments (the increments model the distribution of the num-
ber of messages arriving in one batch). Theories of such processes with arbitrary

28 A. Serjantov

increments exist7; in particular it is reassuring that under reasonable assump-
tions the implied distributions inside the mixes are stationary. The mathemat-
ically inclined reader is referred to [1,8] for (very complex) properties of such
processes.

7 Conclusion

In this paper we drew attention to the asymptotic properties of mixes. By con-
sidering how the size of the pool mix grows with the number of messages in the
mix, we showed that the obvious previously used parameterization of the bino-
mial mix has some undesirable properties and proposed a fix. We have also sug-
gested some new mixes within the generalised mix framework. Next, we showed
that the variance of the previously used binomial mix is zero at high loads, hence
it no longer has pool size hiding properties. Furthermore, mixes which use the
generalised mix framework all have small variance of pool size. We propose using
arbitrary distributions for pool size and show how this can increase the variance
of the pool size. Finally, we present a method for determining the distribution
of messages inside various mixes assuming Poisson message arrivals.

References

1. Barndorff-Nielsen, O.E., Shepard, N.: Non-gaussian OU based models and some
of their uses in financial economics and modelling by Levy processes for finan-
cial econometrics. Economics Papers 1999-w9/2000-w3, Economics Group, Nuffield
College, University of Oxford (2000)

2. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 4(2) (February 1981)

3. Cooper, R.: Introduction to Queueing Theory. North-Holland, New York (1981)

4. Dı́az, C.: Anonymity and Privacy in Electronic Services. PhD thesis, Katholieke
Universiteit Leuven, Leuven, Belgium (December 2005)

5. Dı́az, C., Preneel, B.: Reasoning about the anonymity provided by pool mixes that
generate dummy traffic. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, Springer,
Heidelberg (2004)

6. Dı́az, C., Sassaman, L., Dewitte, E.: Comparison between two practical mix de-
signs. In: Samarati, P., Ryan, P.Y A, Gollmann, D., Molva, R. (eds.) ESORICS
2004. LNCS, vol. 3193, Springer, Heidelberg (2004)

7. Dı́az, C., Serjantov, A.: Generalising mixes. In: Dingledine, R. (ed.) PET 2003.
LNCS, vol. 2760, Springer, Heidelberg (2003)

8. James, L.F.: Laws and likelihoods for Ornstein Uhlenbeck-Gamma and other BNS
OU stochastic volatilty models with extensions (2006),
〈http://www.citebase.org/abstract?id=oai:arXiv.org:math/0604086〉

9. Kesdogan, D., Egner, J., Büschkes, R.: Stop-and-go MIXes: Providing probabilistic
anonymity in an open system. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525,
Springer, Heidelberg (1998)

7 They turn out to be useful in modeling stochastic volatility and electricity prices(!).

A Fresh Look at the Generalised Mix Framework 29

10. O’Connor, L.: On blending attacks for mixes with memory. In: Barni, M., Herrera-
Joancomart́ı, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS,
vol. 3727, Springer, Heidelberg (2005)

11. Serjantov, A.: On the Anonymity of Anonymity Systems. PhD thesis, University
of Cambridge (June 2004)

12. Serjantov, A., Dingledine, R., Syverson, P.: From a trickle to a flood: Active at-
tacks on several mix types. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578,
Springer, Heidelberg (2003)

Two-Sided Statistical Disclosure Attack

George Danezis, Claudia Diaz, and Carmela Troncoso

K.U. Leuven, ESAT/COSIC,
Kasteelpark Arenberg 10,

B-3001 Leuven-Heverlee, Belgium
{George.Danezis,Claudia.Diaz,Carmela.Troncoso}@esat.kuleuven.be

Abstract. We introduce a new traffic analysis attack: the Two-sided
Statistical Disclosure Attack, that tries to uncover the receivers of mes-
sages sent through an anonymizing network supporting anonymous
replies. We provide an abstract model of an anonymity system with
users that reply to messages. Based on this model, we propose a lin-
ear approximation describing the likely receivers of sent messages. Using
simulations, we evaluate the new attack given different traffic character-
istics and we show that it is superior to previous attacks when replies
are routed in the system.

1 Introduction

Anonymous communications systems have been studied since 1981, when David
Chaum first proposed the mix [2]. Yet, it has been known for some time that
anonymity systems, not offering full unobservability, are insecure against long
term Disclosure [1] and Statistical Disclosure Attacks [3] (SDA).

In this work, we extend Statistical Disclosure Attacks [3] in order to model
user’s behavior that deviates from the standard model considered so far in the
literature. We consider that users not only send messages to a list of contacts,
but also reply to received messages with some probability. Despite the real-world
significance of modeling systems that allow anonymous replies, this is the first
in-depth study of their security.

An adversary deploying our Two-sided Statistical Disclosure Attack (TS-SDA)
takes into account the fact that some messages sent by a target user Alice are
replies, in order to infer information on the set of Alice’s contacts, and trace
individual messages more effectively. This is done by combining information
from sender and receiver anonymity sets when tracing replies.

We show through simulations that the Two-sided Statistical Disclosure At-
tacks give much better results than the traditional Statistical Disclosure Attacks,
when tracing anonymized traffic that contains replies. We also evaluate how the
effectiveness of our attacks is influenced by users’ behavior (e.g., how often users
reply, or how long it takes them to reply).

This paper is organized as follows: We review the relevant previous work
concerning Disclosure Attacks in Sect. 2. Section 3 describes our model of the
network and the users’ behavior. Section 4 introduces our attacks, which are

N. Borisov and P. Golle (Eds.): PET 2007, LNCS 4776, pp. 30–44, 2007.

Two-Sided Statistical Disclosure Attack 31

evaluated through simulations in Sect. 5. Finally, some thoughts on extending
the attacks are discussed in Sect. 6, and we offer our conclusions in Sect. 7.

2 Background and Related Work

The field of anonymous communications started in 1981 with David Chaum’s
mix [2]. A mix is a relaying router that ensures, through cryptography and
reordering techniques, that input messages cannot be linked to output messages,
therefore providing anonymity. Based on these ideas, specialized cryptographic
communication protocols exist for ‘remailing’ email messages, and the latest
standard, Mixminion [4], allows users not only to send, but also to anonymously
reply to email messages.

Despite the level of protection that mix networks provide, they still leak some
information. An external observer is able to find out the identities (or at least
network addresses) of mix users sending or receiving messages, as well as the ex-
act time messages are sent and received. We can find in the literature a powerful
family of Disclosure Attacks [1], first proposed by Kesdogan et al. [8]. These
attacks allow an observer to learn the correspondents of each user and, in the
long run, de-anonymize their messages. To counter these attacks, there is new
research towards unobservable mix networks, such Nonesuch [7], where the users
send their messages to the anonymity system as stegotext hidden inside Usenet
postings.

The Disclosure Attack relies on a simple model for anonymous communi-
cations and user behavior. The target user, Alice, communicates only with her
contacts (a subset of all possible recipients), while the other users send to all pos-
sible recipients with uniform probability. All users send their messages through
a simple threshold mix [2]. This type of mix collects a certain number of mes-
sages (the threshold), and sends them to their destinations in a random order.
An adversary only learns the public parameters of they system, and, in each
round, who is sending and receiving messages. With no further information, the
adversary can learn the set of contacts of Alice.

The two key shortcomings of the Disclosure Attack are its reliance on solving
an NP-complete problem, and its sensitivity to deviations from the simple user
behavior and communication models considered. The computational efficiency of
the attack has been reduced by the Hitting Set Attack [9] where simple heuristics
are used to evaluate the most likely set of Alice’s contacts, which are tested to
see if they are acceptable solutions. This leads to quick and exact results, yet the
Hitting Set attack is still sensitive to even slight changes in the model. Allowing
flexible models for user behavior and communication is key to understanding
the security of real-world anonymous systems, since neither the systems nor the
users’ behavior fit perfectly idealized models.

A different style of attack, the Statistical Disclosure Attack (SDA) [3], con-
siders the same user behavior and communication model, but reduces the com-
putation complexity by using statistical models and approximations to reveal
the same information to an attacker. The Statistical Disclosure Attack has been

32 G. Danezis, C. Diaz, and C. Troncoso

extended to situations where the anonymity system is a pool mix, instead of a
simple threshold mix [5]. This demonstrates that its underlying principles pro-
vide enough flexibility to successfully model complex anonymity systems. Even
more complex models were evaluated by simulation in [10]. In this paper, we
present a variant of the Statistical Disclosure Attack to de-anonymize traffic
containing replies.

3 Mix Networks with Anonymous Replies

Building systems that allow full bi-directional anonymity, as first suggested by
David Chaum in 1981, has been a key goal for anonymous communication design-
ers. The latest remailer, Mixminion, offers this feature through the use of single
use reply blocks (SURBs), cryptographic tokens that can be used to anonymously
route back reply messages through a mix network. One of the key requirements
of the Mixminion reply mechanism was to make replies indistinguishable from
normal messages: an adversary observing a message leaving a user is not able to
tell, from the bit string of the message or the processing that is applied to it in
the first few mixes, if it is a reply or a normal message.

Our objective is to study the anonymity of messages in a network, such as
Mixminion, that allows anonymous replies. For this reason, we modify the user
behavior model of the Disclosure Attacks to accommodate replies, while consid-
ering that they are semantically indistinguishable from normal forward messages.
In our new models, users send messages to the anonymity network either to ini-
tiate a discussion with one of their contacts, or to reply to a message they have
received.

Following the spirit of previous Statistical Disclosure Attacks we describe
many aspects of the system, such as the choice of conversation partners, the fact
of replying to a message, and the time taken to send replies, as being sampled
from independent probability distributions. We model users’ initiation of new
discussions as a Poisson process, and their choice of conversation partners is a
sample out of a distribution of contacts. Messages are replied to with a known
probability, and the time it takes to send the reply is exponentially distributed.

3.1 A Formal Model for Message Replies

We assume that there are N users in the system that send and receive messages.
Each user n ∈ [0, N − 1] has a probability distribution Dn of sending to other
users. We consider that the target user Alice has a distribution DA of sending to
a subset of her k ∈ N contacts with uniform probability 1/k. We have considered
two models for the rest of the users: in the first case, they send with uniform
probability 1/N to the N users. In the second case, they send to a subset k ∈ N ,
as Alice does. All users initiate discussions according to a Poisson process with
rate λI . An array notation denotes the probability user n initiates a conversation
with user m (i.e., Dn[m]), and the distribution over all users should sum up to
one (i.e.,

∑
∀m∈N Dn[m] = 1). Figure 1 depicts our system model.

Two-Sided Statistical Disclosure Attack 33

Fig. 1. System model

Alice, the target of the attack, is the only user that we initially model as
replying to messages. She replies to received messages with probability r. If a
reply is to be sent, it is done some time after the message it replies to was
received. The reply delay is a sample from an exponential distribution with
parameter (rate) λr. We have also considered a model in which all users reply
to messages. We note that relationships are not symmetric in our system, and
therefore the set of senders to which users reply to is not the same as the set of
receivers considered in Dn.

The adversary knows the overall replying behavior of Alice, namely the prob-
ability of a reply r and the reply delay rate λr . He also knows the number of
users in the system N and the rate λI at which discussions are initiated by them.
The objective of the adversary is to uncover DA.

A passive observer of the system can see when users send or receive messages.
In our analysis, we only look at the messages received and sent by Alice. We
denote Ks and Kr the total number of messages sent and received by Alice,
respectively, within the time window [0, tmax] in which the system is observed.
An adversary has accurate information about the time each message was sent or
received, denoted as T (Si) and T (Rj) for sent message i and received message
j, respectively.

We consider that the adversary is observing all messages going in and out of
the anonymity system, and can therefore calculate the probabilities describing
the likely receivers or senders of each message. We denote the distribution over
all N potential senders for a received message Rj as Sen(Rj), and over the re-
ceivers of a sent message Si as Rec(Si). We use an array notation to denote the
probability of individual senders or receivers (e.g., Sen(Rj)[n] for the probability

34 G. Danezis, C. Diaz, and C. Troncoso

that user n sent the message Rj received by Alice). As expected, the probabilities
over all possible users should sum up to one (

∑
∀n∈N Sen(Rj)[n] = 1).

Aside from the sender and receiver distributions for messages, the attacker
needs to know the relative contribution of Alice’s messages to the anonymity
sets. By contribution we mean the extent to which inputs Si from Alice in
the mix affect the receiver distribution Rec(Si). Assuming that Alice sends αr

messages in round r, we denote the relative contribution messages from Alice as
αr

B , and the contributions for others as B−αr

B , as this is the contribution of her
αr messages input into a threshold mix with parameter (i.e., threshold) B. Note
that an equivalent quantity can be calculated without difficulty for other types
of anonymity systems such as pool mixes.

4 The Two-Sided Statistical Disclosure Attack

Before presenting the Two-sided Statistical Disclosure Attack we will present the
standard Statistical Disclosure Attack in terms of our formal model. A summary
of all the notation is given in Table 1:

Table 1. Variables used in the model and the attacks

Name Description
N Number of users in the system

DA The distribution of contacts of Alice
Dn The distribution of contacts of other users
λI The rate of message initiations
r Probability a message is replied to
λr The rate at which messages are replied to
B The threshold of the mix

tmax The total observation time
Ks, Kr The total number of messages Alice sends and receives

Si, T (Si) Alice’s ith sent message and the time it was sent
Rec(Si) The receiver distribution for message Si

Rj , T (Rj) Alice’s jth received message and the time it was received
Sen(Rj) The sender distribution for message Rj

αr The number of messages sent by Alice in batch round r

ZI The expected volume of discussion initiations for each unit of time
Zr The expected volume of replies for a unit of time
Zrj The expected volume of replies to Rj

Iij The intersection of distributions (Sen(Rj) and Rec(Si)) of messages Rj and Si

4.1 The ‘Traditional’ Statistical Disclosure Attack

The traditional Statistical Disclosure Attack (SDA) works by observing the re-
ceiver anonymity sets of all messages sent by Alice, and aggregating them to
infer the probability distribution DA. The messages in the receiver anonymity
set Rec(Si) of each message sent by Alice are assumed to be drawn from a

Two-Sided Statistical Disclosure Attack 35

distribution that is a mixture between the contacts of Alice (DA) and the con-
tacts of everyone else Dn:

Rec(Si) ∼ 1
B

DA +
B − 1

B
Dn (1)

The distributions describing the contacts of the rest of the users are approx-
imated by using a uniform distribution U over all the possible senders. The
adversary estimates the distribution DA after a number observations Ks as:

D̂A ≈ 1
Ks

∑

∀i∈[0,Ks−1]

[B · Rec(Si) − (B − 1) · Dn] (2)

The estimation D̂A can then be used to infer the likelihood of the receiver
corresponding to Alice in each round, by calculating:

Rec(Si)′ =
Rec(Si) · D̂A

|Rec(Si) · D̂A|
(3)

The key advantage of the statistical versions of the Disclosure Attack is their
speed. It requires O(Ks) vector additions to estimate DA, and a further O(Ks)
vector inner product calculations to get the estimates for the receiver of each
round. Since vectors Rec(Si) are sparse, both operations can be done very
efficiently, and in parallel.

The downside of statistical attacks is that they are not exact. They do not take
into account the basic constraint that a message can only be sent by one sender.
This may lead to wrong results if too few samples are used to estimate DA.

4.2 The Two-Sided Statistical Disclosure Attack

The Two-sided Statistical Disclosure Attack (TS-SDA) takes into account the
messages received by Alice (and the information about their potential senders),
as well as the time of reception and sending of all messages. The aim of the
attack is twofold: to estimate the distribution of contacts of Alice DA, and to
infer the receivers of all the messages sent by Alice (i.e., forward messages she
has initialized, and replies to messages she has received).

As in the Statistical Disclosure Attack (SDA), we will consider the output of
each round of mixing (i.e., the distribution of potential receivers corresponding
to each message) as the outcome of a mixture distribution. The components of
this mixture are: the distribution DA of contacts of Alice, the distribution Dn

of the other senders, and the potential recipients of replies. Therefore, we need to
approximate the relative weight of the contribution of each of these distributions
to compute the receiver distribution.

Weight of normal messages. Let us consider a specific message, Si sent by
Alice. What is the relative probability of it being a discussion initiated by Alice,
versus the probability of being a reply? We approximate this probability ZI by

36 G. Danezis, C. Diaz, and C. Troncoso

calculating the estimated number of discussions initiated by Alice that should
occur at time T (Si), which is equal to:

E(Initiated discussion at T (Si)) =
Ks

λI · tmax
≡ ZI (4)

The rationale behind this approximation is the following: the adversary ob-
serves Alice sending Ks messages which are a-priori equally likely to be an initi-
ated discussion. Given that Alice initiates messages with rate λI , we expect an
average of λI · tmax discussions to be initiated by her over the total observation
time tmax.

Weight of replies. Similarly, we want to estimate the expected number of
replies that would be sent at time T (Si). This expectation depends on the times
messages Rj have been received by Alice before T (Si), and it is approximated
by:

E(Reply to Rj at T (Si)) = r ·
expλr

(T (Si) − T (Rj))∑
∀k.T (Rj)<T (Sk) expλr

(T (Sk) − T (Rj))
≡ Zrj

(5)

E(Replies at T (Si)) =
∑

∀j.T (Rj)<T (Si)

Zrj ≡ Zr (6)

A reply to message Rj is only generated with probability r. If it is gener-
ated, then it corresponds to Si with a certain probability Zrj . This probability
is computed by considering the likelihood that the reply was sent at T (Si), nor-
malized by the likelihood of the reply corresponding to any message Sk, sent
after Rj was received (i.e., T (Rj) < T (Sk)). We have assumed that messages
are answered after a delay distributed exponentially with parameter λr (i.e.,
expλr

(t) = λr · e−λrt). Summing over all messages Rj in the past gives us the
likelihood Zr of message Si being a reply.

Full model. If message Si is a reply to message Rj , then we can get even
more of information about its destination. We intersect the receiver distribution
Rec(Si) for sent message, Si, and the sender distribution Sen(Rj) for received
message Rj , and thus obtain a probability distribution Iij which describes the
likely receiver of Si:

Iij =
Rec(Si) · Sen(Rj)
|Rec(Si) · Sen(Rj)|

(7)

Given the different weights ZI , Zr and Zrj, we can model the distribution of
receivers corresponding to the round of a message Si. We do so by combining
the distributions DA, Dn and the intersection Iij for the replies, while taking
into account that Alice sends a total of αr messages in round r:

The figure below depicts the rationale behind our model. We look at the
receivers at the output of the round r of mixing when Alice sends messages
Si . . . Si−αr−1, and consider what information they convey about her. Each mes-
sage coming out of this round of mixing could correspond a message sent by Alice,

Two-Sided Statistical Disclosure Attack 37

Receiver of message in Si batch at round r
B−αr

B
αr
B

is not Si is Si
ZI Zrj

Initiate Reply to Rj

Dn DA Iij

Fig. 2. An illustration of the components of equation 8

or to a message sent by another participant (drawn at random from Dn). If the
message corresponds to Si, then it can either be a discussion initiation, drawn
from DA, or a reply. Analytically we approximate the distribution Rec(Si) as:

Rec(Si) ∼ αr

B

ZI · DA +
∑

j ZrjIij

ZI + Zr
+

B − αr

B
Dn (8)

The probabilities αr

B and B−αr

B describe the relative weight of Alice’s αr mes-
sages, versus the messages of the other senders (modeled by the distribution
Dn). The distributions Iij are the normalized intersection of the potential set
of senders of Rj with the set of possible receivers of Si. Each of the Iij are
weighted by the factor Zrj, which describes the likelihood Si is indeed a reply
to Rj .

As in the Statistical Disclosure Attack, we solve (8) for DA and average the
(very noisy) estimates for all sent messages Si, in order to get the estimate D̂A:

DA ∼
(B · Rec(Si) − (B − αr) · Dn)(ZI + Zr) −

∑
j ZrjIij

αrZI
≡ Ci (9)

D̂A ≈ 1
Ks

∑

∀i

Ci (10)

Finally, the estimate D̂A is in turn used to calculate the distribution of po-
tential receivers for each message Si:

Rec(Si)′ ∼
(

αr

B

ZI · D̂A +
∑

j ZrjIij

ZI + Zr
+

B − αr

B
Dn

)
· Rec(Si) (11)

Our best guess for the actual receiver of message Si is the intersection of
the a-priori distribution of senders (given the volume of normal messages and
replies sent by Alice) as well as their timing (the first term of (11)) and the
actual receiver anonymity set for the round, Rec(Si).

All the quantities needed to estimate Rec(Si)′ are known except for the
distributions Dn describing the background traffic generated by other users. The

38 G. Danezis, C. Diaz, and C. Troncoso

traditional Statistical Disclosure Attack, following the model of the Disclosure
Attack, considers this distribution to be uniform U (U [i] = 1/N). Instead, in the
TS-SDA we use a technique, first proposed by Mathewson and Dingledine [10],
that estimates Dn from the traffic seen in the network in the rounds when Alice
is not present.

5 Evaluation

We evaluate our new Two-Sided Statistical Disclosure Attack (TS-SDA) against
the traditional Statistical Disclosure Attack (SDA) under various traffic condi-
tions. In order to compare them and understand which parameters of the system
affect their performance, we define a set of standard parameters that are sum-
marized in Table 2.

Table 2. Standard parameters of the experiments

Name Value Description
N 1000 Number of participants
k 20 Number of contacts of Alice
B 100 Threshold of the mix

tmax 4000 Observation time
λI 0.1 Initiation rate
r 0.5 Reply probability
λr 0.5 Reply delay rate

These parameters were chosen to depict an average system: the threshold is
large enough to accommodate a good fraction of senders and receivers (about
1/10) and nodes send enough messages and replies to illustrate our techniques.
Note that the rate at which replies are sent (λr = 0.5) is higher than the rate
at which discussions are initiated (λI = 0.1). The choice of this parameter was
based on the intuition that replies are sent much faster (with respect to the time
of reception of the message that originated them) than messages initiated by a
user (with respect to the last initiation).

In our analysis so far we have assumed nothing about Alice’s distribution
DA. For the sake of simplifying our experiments, we have assumed that the
probability mass is distributed equally between k contacts of Alice, meaning that
Alice chooses at random between them when she wants to initiate a discussion.
Again, the ratio between the number of Alice’s contacts k and the total number
of users N reflects values observed in a medium size systems (k/N = 2%). It is
important to note though, that the statistical attacks should work with arbitrary
DA (although the time needed to discard the unlikely components of DA would
be larger.)

The final output of the TS-SDA attack is a probability distribution Rec(Si)′

for each message Si that Alice has sent. These distributions describe the belief
of the adversary as to who is the receiver of message Si. We evaluate our attacks

Two-Sided Statistical Disclosure Attack 39

by looking at the rank that the real receivers of Si have in the distributions
Rec(Si)′. The rank is the number of receivers in distribution Rec(Si)′ that
have at least the same probability as the real receiver, and would therefore
mislead the adversary in its attempts to trace the message1. Intuitively, this is
equivalent to ordering receivers according to their probabilities, and using the
position of the real receiver as a metric. Low ranks show that the attack is more
successful.

In each round of the attack, we have a collection of ranks, one for each message
Si the adversary wants to trace. This distribution of ranks is represented in our
graphs using box plots containing information about their maximum value, first
quartile (Q1), median, third quartile (Q3) and maximum value. The box plots
also depict outliers; i.e., ranks p that are very far from the rest of the distribution
(p > Q3 + 1.5(Q3 − Q1) or p < Q1 − 1.5(Q3 − Q1)). The box plots and outliers
give a good overview of the tails of the rank distribution, which is crucial in our
evaluation.

Fig. 3, compares the performance of the Statistical Disclosure Attack (SDA)
to the Two-Sided Statistical Disclosure Attack (TS-SDA), as a user is observed
for more time using the standard parameters. While the accuracy of both attacks
increases with time, the TS-SDA always provides better results than the SDA.
After 4000 ticks the TS-SDA classifies the correct sender within the 20 first
candidates 3/4 of the time (for the SDA it is within ∼ 35, 3/4 of the time).

It is important to explain why the key difference between the TS-SDA and the
SDA can only be seen at the tail of the distributions, while their first quartile
(Q1) and median are about the same. For this, we need to understand better
the strengths of each attack. Figure 4 shows the effectiveness of both attacks in
tracing discussion initiation messages and replies (in a system using the standard
parameters). We we can see that the TS-SDA and the SDA perform equally well
in de-anonymizing discussion initiations (the SDA often performs slightly bet-
ter). However, the main strength of the TS-SDA is its effectiveness in uncovering
the recipients of replies, while the simple SDA is remarkably bad at it.

This explains in Fig. 3 the fact that the two attacks have the same first
quartile and median: most messages in the system are discussion initiations, and
therefore the attacks perform equally well for them. The difference appears only
for the minority of messages that are replies, giving the SDA distribution of
ranks a much heavier tail.

As we have seen, the TS-SDA outperforms the SDA mostly in its ability to
trace replies. In Fig. 5 we show the sensitivity of both the SDA and TS-SDA
to the reply parameters. We can see in the first graph that in the absence of

1 Why not use metrics based on Information Theory? The traffic analysis models
we use in the (TS-)SDA are only approximations of the real-world as well as the
theoretical sending models. Therefore the distributions Rec(Si)′ give us only partial
information about the actual receivers and are sometimes (as we show) just wrong.
before applying the information theoretic metrics for anonymity, one would need
to look at the mutual information between Rec(Si)′ and the actual receivers to
understand the biases in the approximations.

40 G. Danezis, C. Diaz, and C. Troncoso

TS−SDA SDA TS−SDA SDA TS−SDA SDA TS−SDA SDA

0
20

40
60

80
10

0

R
an

k

500 ticks 1000 ticks 2000 ticks 4000 ticks

Fig. 3. Distribution of the ranks of the actual receivers after the Statistical Disclosure
and Two-sided Statistical Disclosure attacks were applied. The estimation of D̂A was
after 500, 1000, 2000 and 4000 ticks, and has a dramatic effect on the effectiveness of
the attack. (Some outliers are not shown.)

TS−SDA
Initiations

SDA
Initiations

TS−SDA
Replies

SDA
Replies

1
5

50
50

0

R
an

k

Fig. 4. (Note the logarithmic scale.) The effectiveness of the Two-sided Statistical Dis-
closure and traditional Statistical Disclosure attacks in de-anonymizing discussion ini-
tiation messages opposite to replies. The key advantage of the TS-SDA is its ability to
correctly handle replies.

replies both attacks yield similar results. The graph labeled “Normal” shows the
results for the standard parameters of our simulations, where our attack is more
accurate that the SDA.

As messages are replied to at a slower rate (λr = 0.025), both attacks become
less effective, since discussion initiations and replies become difficult to distin-
guish using timing information. The TS-SDA does not benefit any more from
being able to intersect receiver and sender anonymity sets, and the standard
SDA is subject to more noise. The consequences of this worsening are rather
important, since it gives us a idea on how to resist the TS-SDA, and make use
of the noise generated by the replies defensively.

Two-Sided Statistical Disclosure Attack 41

TS−SDA SDA TS−SDA SDA TS−SDA SDA TS−SDA SDA

0
20

40
60

80

R
an

k

No Replies High−Latency
Replies

Normal
Many

Replies

Fig. 5. The effectiveness of the Two-sided Statistical Disclosure and traditional Sta-
tistical Disclosure attacks for different types of traffic. With no replies, at high latency
times (λr = 0.025), standard conditions and many replies (r = 0.95).

When we have more replies (graph “Many Replies,” with probability of reply
r = 0.95) the TS-SDA performs even better. The higher number of replies in-
troduces noise for the SDA, worsening its performance, while the TS-SDA can
de-anonymize them more effectively.

Finally, in Fig.6 we show the effects of changing the background traffic. The
SDA is sensitive to other users having a non-uniform behaviour (all users send
only to a limited set of k = 20 contacts – just as Alice does – instead of uniformly
to all other N = 1000 users in the system), which worsens its accuracy. The
TS-SDA, however, can handle this sort of traffic due to its estimation of the
background noise.

TS−SDA SDA TS−SDA SDA TS−SDA SDA

0
20

40
60

80

R
an

k

Standard Non Uniform Full Model

Fig. 6. The effect of the background traffic on the Two-sided Statistical Disclosure and
traditional Statistical Disclosure Attacks. In the Non-Uniform case everyone sends to
contacts only, and in the Full Model everyone replies.

42 G. Danezis, C. Diaz, and C. Troncoso

Lastly, we show the results for the case in which all users reply to messages. In
this case, Alice’s correspondents reply to her, which in turn may generate further
replies by her part. This symmetry increases the flow of traffic between Alice and
her communication partners, thus making it easier to estimate her distribution
of contacts. In the graph we can see that both the SDA and TS-SDA take benefit
of this advantage, but that the impact on the latter is significantly stronger.

6 Discussion and Open Problems

The model presented is simple, allowing us to model a user replying to email
and to illustrate our techniques to perform attacks. Yet its simplicity makes it
deviate from real world usage in some ways.

First of all, we do not expect real users to initiate discussions in a way that can
be approximated by a single Poisson process. There will definitely be fluctuations
in the rate new discussions are initiated according to the time of day, the week
day, the environment of the user and the user himself. The same is true for
fluctuations in the reply delay and the probability of replying to messages.

Secondly, the parameters of the system are not likely to be independent of
each other. Users are likely to read, write and reply to emails in bursts and not
as they arrive.

Yet in some aspects the greatest shortcoming of the proposed model is that
the probability of replying to an email is considered independent of the identity
of the sender of the message. This is rather counterintuitive: one would expect
Alice to be preferring to reply to her contacts rather than strangers (or even
spammers) writing to her. Our model does not capture this aspect of two-way
communication.

One way of modeling this aspect is to require contacts to be symmetric, mean-
ing that if Alice has a certain probability to talk to Bob, then Bob should have
the same probability to write to Alice (i.e. DA[B] = DB[A]). In this way, con-
versations will inevitably leak information about friendships. Yet, if this was the
case, the messages sent out by Alice would basically follow her distribution DA

no matter if they were the product of a discussion initiation or a reply. This
case would allow the attack to be no more complex than the simple statistical
disclosure.

Instead, we allow the distributions Dn to be arbitrary, and replies to be in-
dependent of the sender of messages. This means that replies do not leak any
information about the the distribution of Alice (DA), and are rather noise when
the adversary attempts to estimate this distribution. We leave the specification
of a model that takes into account the contacts of Alice when replying as an
open problem for future work.

In our analysis we have assumed, for simplicity, that a threshold mix is used.
Since only the probability distributions describing the likely senders and receivers
of messages contribute to the attack, it should be possible to extend our analysis
to any other anonymity system (not offering full unobservability).

Two-Sided Statistical Disclosure Attack 43

Finally, our model presupposes that there can be only one reply per message,
forcing the total volume of replies to be at most a fraction of the discussion
initiations. This may not be the case for many users that have reactive rather
than proactive email habits, and prefer to reply to messages rather than initiating
a discussion. In certain environments (like tech-support desks) this may be a
more appropriate model. Again, extending the model to take into account such
traffic patterns is an open problem.

7 Conclusions

The Two-sided Statistical Disclosure Attack (TS-SDA) is the first traffic analysis
attack to be explicitly targeted at anonymous communication systems that allow
anonymous, and indistinguishable, replies. It takes into account the existence of
replies and the timing of messages to estimate the correspondents of a target
user and to trace the messages they send. The attack we show is very fast, as
it operates in time linear in the number of messages (O(Ks)) and only requires
simple operations on vectors. It is also possible to execute it in parallel or in
specialised hardware very efficiently.

We have assessed the effectiveness of the TS-SDA under different conditions.
It performs best when the volume of replies is high, and the time it takes users
to reply is short. In this case, it uses the timing correlations between the received
messages and sent replies to de-anonymize them. On the other hand, it performs
as well as the Statistical Disclosure Attack (SDA) when few or no replies are
present.

An important observation is that the timing of the replies is critical to the
security of the anonymity system. When users send replies long time after receiv-
ing a message, it is difficult to correlate them with the originating message. This
means that the replies act as cover traffic for the discussion initiation and both
TS-SDA and SDA perform worse than in the absence of replies. Therefore, our
key conclusion is that secure anonymity systems should make replies not only
cryptographically indistinguishable from normal messages, but also difficult to
correlate in time with the messages that are being replied.

User contacts in our study are not symmetric: Alice initiating discussions
with Bob, does not mean that Bob also initiates discussions with Alice. Yet real
social networks are likely to exhibit such symmetries. In this case, replies leak
information about a user’s contacts that contribute to the success of both the
TS-SDA but also the simple SDA.

Acknowledgements

This work was partially supported by the IWT SBO ADAPID project (Advanced
Applications for e-ID cards in Flanders), the Concerted Research Action (GOA)
Ambiorics 2005/11 of the Flemish Government and by the IAP Programme
P6/26 BCRYPT of the Belgian State (Belgian Science Policy). George Danezis
is funded by a research grant of the Katholieke Universiteit Leuven.

44 G. Danezis, C. Diaz, and C. Troncoso

References

1. Agrawal, D., Kesdogan, D.: Measuring anonymity: The disclosure attack. IEEE
Security & Privacy 1(6), 27–34 (2003)

2. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

3. Danezis, G.: Statistical disclosure attacks. In: Gritzalis, D., De Capitani di Vimer-
cati, S., Samarati, P., Katsikas, S.K. (eds.) SEC of IFIP Conference Proceedings,
vol. 250, pp. 421–426. Kluwer, Dordrecht (2003)

4. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: Design of a type iii anony-
mous remailer protocol. In: IEEE Symposium on Security and Privacy, pp. 2–15.
IEEE Computer Society Press, Los Alamitos (2003)

5. Danezis, G., Serjantov, A.: Statistical disclosure or intersection attacks on
anonymity systems. In: Fridrich [6], pp. 293–308

6. Fridrich, J. (ed.): IH 2004. LNCS, vol. 3200, pp. 23–25. Springer, Heidelberg (2004)
7. Heydt-Benjamin, T.S., Serjantov, A., Defend, B.: Nonesuch: a mix network with

sender unobservability. In: 2006 Workshop on Privacy in the Electronic Society,
ACM Press, New York (2006)

8. Kesdogan, D., Agrawal, D., Penz, S.: Limits of anonymity in open environments. In:
Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 53–69. Springer, Heidelberg
(2003)

9. Kesdogan, D., Pimenidis, L. : The hitting set attack on anonymity protocols. In:
Fridrich [6], pp. 326–339

10. Mathewson, N., Dingledine, R.: Practical traffic analysis: Extending and resist-
ing statistical disclosure. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS,
vol. 3424, pp. 17–34. Springer, Heidelberg (2005)

A Family of Dunces: Trivial RFID Identification

and Authentication Protocols

Gene Tsudik�

Computer Science Department
University of California, Irvine

gts@ics.uci.edu

Abstract. Security and privacy in RFID systems is an important and
active research area. A number of challenges arise due to the extremely
limited computational, storage and communication abilities of a typical
RFID tag. This paper describes a step-by-step construction of a family of
simple protocols for inexpensive untraceable identification and authen-
tication of RFID tags. This work is aimed primarily at RFID tags that
are capable of performing a small number of inexpensive conventional (as
opposed to public key) cryptographic operations. It also represents the
first result geared for so-called batch mode of RFID scanning whereby the
identification (and/or authentication) of tags is delayed. Proposed pro-
tocols involve minimal interaction between a tag and a reader and place
very low computational burden on the tag. Notably, they also impose
low computational load on back-end servers.

1 Introduction

RFID technology is rapidly becoming ubiquitous. In the near future, it is expected
to replace barcodes as the most common means of product and merchandise iden-
tification. Current and emerging applications range from toll transponders, pass-
ports and livestock/pet tracking devices (on the high end) to miniscule stealthy
tags in everyday items, such as clothing, pharmaceuticals, library books and so
on. Unlike barcodes, RFID tags do not require close physical proximity between
a reader and a scanned object and also do not require a line-of-sight communica-
tion channel. Furthermore, RFID tags’ smaller form factor takes up less valuable
packaging “real estate”. However, current and emerging RFID proliferation into
many spheres of everyday life raises numerous privacy and security concerns.

One of the main issues has to do with malicious tracking of RFID-equipped
objects. While tracking RFID tags is typically one of the key features and goals
of a legitimate RFID system (e.g., in a supply-chain environment) unauthorized
tracking of RFID tags is viewed as a major privacy threat.

In general, in-roads recently made by the RFID technology have prompted
some public discontent and controversy. Privacy advocates have pointed out
some sinister consequences of malicious tag tracking.
� An earlier (and much shorter) version of this paper appeared in [1]. This paper

includes substantial revisions, enhancements and extensions to [1].

N. Borisov and P. Golle (Eds.): PET 2007, LNCS 4776, pp. 45–61, 2007.

46 G. Tsudik

This paper describes a protocol family for inexpensive untraceable identifi-
cation and authentication of RFID tags. Untraceable means that it is computa-
tionally infeasible to infer – from interactions with a tag – information about
the identity of the tag or link multiple authentication sessions of the same tag.
Proposed protocols are inexpensive, requiring as little as one light-weight cryp-
tographic operation on the tag and storage for one key. They are particularly
well-suited for the batch mode of tag identification whereby a reader interro-
gates a multitude of tags and later identifies/authenticates them in bulk. Fur-
thermore, real-time computational load on the back-end sever is minimal due to
the simple pre-computation technique described below.

1.1 Operating Environment

The adversary, in our context, can be either passive (e.g., eavesdropper) or ac-
tive (e.g., impersonator). It can corrupt or, attempt to impersonate, any entity
and we assume that its primary goal is to track RFID tags. (In other words, we
say – informally – that the adversary succeeds if it manages, with non-negligible
probability over 50%, to link multiple authentication sessions of the same tag.)
We point out from the start that we do not initially consider forward secu-
rity – adversary’s inability to link or trace prior manifestations of a tag in the
event of complete tag compromise. At the same time, compromise of a set of
tags should not lead to the adversary’s ability to track other tags (except by
distinguishing among the two sets). Furthermore, our initial goals do not in-
clude resistance to denial of service (DoS) attacks, e.g., attacks that aim to
disable the tags. However, we outline out some DoS-resistant solutions later in
the paper.

The legitimate entities are: tags, readers and servers. A reader is a device
querying tags for identification information. A server is a trusted entity that
knows and maintains all information about tags, their assigned keys and any
other such information. A server is assumed to be physically secure and not
subject to attacks. Multiple readers are assigned to a single server. A server
only engages in communication with its constituent readers. For simplicity, we
assume a single logical server that might resolve to multiple physically replicated
servers. All communication between a server and its readers is assumed to be
over private and authentic channels. Furthermore, servers and readers maintain
loosely synchronized clocks. Both readers and server have ample storage,
computational and communication abilities. (However, in some cases, readers
may not be able to communicate with servers in real time; see below.)

We assume that an RFID tag has no clock and small amounts of ROM (e.g., to
store a key) and non-volatile RAM (to store ephemeral state, such as a counter
or time-stamp). With power supplied by a reader – whether contact or contact-
less – a tag is able to perform a modest amount of computation and commit
any necessary state information – of small constant length – to non-volatile
storage.

A Family of Dunces 47

1.2 Goals

As usual, our goals are to minimize everything, including:

1. non-volatile RAM on the tag
2. code (gate count) complexity
3. tag computation requirements
4. number of rounds in reader-tag interaction1

5. message size in reader-tag interaction
6. server real-time computation load
7. server storage requirements

It is easy to see that the first three items directly influence tag cost. Also, the
4th item (number of rounds and messages) is important since more rounds imply
more protocol logic and, hence, higher complexity and gate count. In fact, having
more than two rounds in reader-tag interaction implies that the tag MUST keep
soft state while the protocol executes. This would necessitate either bigger non-
volatile RAM or continuous power from the reader (while the protocol executes)
to store soft state in volatile RAM.

Finally, we need to avoid features currently not realistic for most low-cost
RFID tags, such as public key cryptography, tamper-resistant shielding or an
on-board clock.

1.3 Modes of Operation

We consider two modes of tag identification: real-time and batch. Here we make
an assumption that the back-end server is necessary as a reader is unable to
identify/authenticate tags on its own, primarily because of the scale, i.e., large
numbers of deployed tags. In situations where this assumption is false, the dis-
cussion in this section does not apply. For example, one could imagine an RFID-
equipped driver’s license reader carried by law enforcement officers which is
capable of storing information about all locally-issued driver’s licenses, e.g., on
the order of tens of millions. (Also, some recent work [16] shows how to perform,
under some circumstances, serverless RFID authentication.)

The real-time mode is the one typically considered in the literature: it involves
on-line contact between the reader and the server, in order to quickly identify
(and, optionally, authenticate) the tag in question. If immediate feedback about
a tag is needed – e.g., in facility access, retail or library check-out scenarios –
the server must be contacted in real time.

In batch mode, a reader scans numerous tags, collects replies and sometime
later performs their identification (and optionally, authentication) in bulk. From
the security perspective, the batch mode seems relevant wherever immediate
detection of fraudulent/counterfeit tags is not the the highest-priority issue and,
1 We use the term “interaction” – as opposed to “protocol” – since the actual tag

authentication protocol may involve interaction between a reader and a server, in
addition to that between a tag and a reader. We are understandably less concerned
about the complexity of the former.

48 G. Tsudik

instead, emphasis is on security against fraudulent readers. In practical terms,
however, the batch mode is appropriate when circumstances prevent or inhibit
contacting the back-end server in real time. For example, consider an inventory
control application, where readers are deployed in a remote warehouse and have
no means of contacting a back-end server in real time. More generally, some of
the following factors might prompt the use of the batch mode:

– The server is not available in real time, either because it is down, discon-
nected or because readers do not have sufficient means of communication.

– The server is available, but is over-loaded with requests, causing response
time to be jittery, thus making each tag interrogation instance unacceptably
slow.

– The server is available and not over-loaded but is located too far away,
causing response time to be too long. (Or, the network is congested, which
cause unacceptable delays).

– A mobile/wireless reader has limited resources and, in order to conserve
battery power, simply can not afford to contact the server for each scanned
tag.

1.4 Tag Requirements

Each tag RFIDi is initialized with at least the following values:

Ki, T0, Tmax

Ki is a tag-specific value that serves two purposes: (1) tag identifier, and (2)
cryptographic key. Thus, its size (in bits) must be the greater of that required
to uniquely identify a tag (i.e., a function of the total number of tags) and that
required to serve as sufficiently strong cryptographic key for the purposes of
Message Authentication Code (MAC) computation. In practice, a 160-bit Ki

will most probably suffice.
T0 is the initial timestamp assigned to the tag. This value does not have to be a

discrete counter, per se. For example, T0 can be the time-stamp of manufacture.
T0 need not be tag-unique; an entire batch of tags can be initialized with the
same value. The bit-size of T0 depends on the desired granularity of time and the
number of times a tag can be authenticated. Tmax can be viewed as the highest
possible time-stamp. Like T0, Tmax does not need to be unique, e.g., a batch of
tags can share this value.

Each tag is further equipped with a sufficiently strong, uniquely seeded
pseudo-random number generator (PRNG). In practice, it can be resolved as
an iterated keyed hash (e.g., HMAC) started with a random secret seed and
keyed on Ki. For a tag RFIDi, PRNGj

i denotes the j-th invocation of the
(unique) PRNG of that tag. No synchronization whatsoever is assumed as far as
PRNG-s on the tags and either readers or servers. In other words, given a value
PRNGj

i , no entity (including a server) can recover Ki or any other information
identifying RFIDi. Similarly, given two values PRNGj

i and PRNGk
j , deciding

whether i = j must be computationally infeasible.

A Family of Dunces 49

2 A Family of Dunces: YA-TRIP, YA-TRAP and
YA-TRAP*

In this section, we introduce our main idea, based on the use of monotonically
increasing time-stamps. We then present three protocols, starting with YA-TRIP
which only offers efficient tag identification, continuing with YA-TRAP which
also provides tag authentication, and concluding with YA-TRAP* which, in
addition, incorporates DoS resistance features.

2.1 The Main Idea

The main idea of our proposal is the use of monotonically increasing time-
stamps2 to provide tracking-resistant (anonymous) tag authentication. The use
of timestamps is motivated by the old result of Herzberg, et al. [6], which we
briefly summarize next.

The work in [6] considered anonymous authentication of mobile users who
move between domains, e.g., in a GSM [13] cellular network or a wired Kerberos-
secured [12] internetwork. The technique in [6] involves a remote user identifying
itself to the host domain by means of an ephemeral userid. An ephemeral userid
is computed as a (collision-resistant, one-way) hash of current time and a secret
permanent userid.

A trusted server in the user’s “home” domain maintains a periodically updated
hash table where each row corresponds to a traveling user. The length of the
update interval is a system-wide parameter, e.g., one hour. The table can be
either pre-computed or computed on-the-fly, as needed. Each row contains a
permanent userid and a corresponding ephemeral userid. When a request from
a foreign agent (e.g., Kerberos AS/TGS3 in a remote domain or VLR4 in a
GSM setting) comes in, the home domain server looks up the ephemeral userid
in the current table. (Since hash tables are used, the lookup cost is constant.)
Assuming that timestamp used by the (authentic) traveling user to compute
the ephemeral userid is reasonably recent (accurate), the hash table lookup is
guaranteed to succeed. This allows a traveling user to be authenticated while
avoiding any tracing by foreign agents or domains.

One of the main advantages of this approach is that the home domain server
does not need to compute anything on demand, as part of each request pro-
cessing. Instead, it pre-computes the current hash table and waits for requests
to come in. The cost of processing a request amounts to a table lookup (con-
stant cost) which is significantly cheaper than a similar approach using nonces
or random challenges. In the latter case, the server would need to compute an
entire table on-the-fly in order to identify the traveling user. As time goes by,
an ephemeral userid table naturally ‘expires’ and gets replaced with a new one.
This is the main feature we would like to borrow for tag authentication purposes.

2 No other type of counters or sequence numbers will do.
3 Authentication Server / Ticket Granting Server.
4 Visitor Location Registry.

50 G. Tsudik

Although the technique from [6] works well for traveling/mobile users, it is
not directly applicable to the envisaged RFID environment. First, a mobile user
can be equipped with a trusted personal device that keeps accurate time. It can
be as simple as a wristwatch or as sophisticated as a PDA. (Moreover, even
without any trusted device, a human user can always recognize grossly incorrect
time, e.g., that which is too far into the future.) Such a device can be relied
upon to produce reasonably accurate current time. An RFID tag, on the other
hand, cannot be expected to have a clock. Thus, it is fundamentally unable to
distinguish among a legitimate and a grossly inaccurate (future) time-stamp.

However, if the tag keeps state of the last time-stamp it “saw” (assuming it
was legitimate), then it can distinguish between future (valid) and past (invalid)
time-stamps. We capitalize on this observation and rely on readers to offer a
putatively valid timestamp to the tag at the start of the identification protocol.
A tag compares the time-stamp to the stored time-stamp value. If the former
is strictly greater than the latter, the tag concludes that the new time-stamp
is probably valid and computes a response derived from its permanent key and
the new timestamp. A tag thus never accepts a time-stamp earlier than – or
equal to the one stored. However, to protect against narrowing attacks5, even if
the timestamp supplied by the reader pre-dates the one stored, the tag needs to
reply with a value indistinguishable from a normal reply (i.e., a keyed hash over
a valid timestamp). In such cases, the tag replies with a random value which is
meaningless and cannot be traced to the tag even by the actual server.

2.2 YA-TRIP: Yet Another Trivial RFID Identification Protocol

We now present the first protocol (YA-TRIP) which provides only the very basic
service – efficient tag identification. The protocol is illustrated in Figure 1.

Remark: We note that MACs based on keyed hashes are a fairly simple and
general technique which has been used in other RFID-related contexts, e.g., [19].
Although YA-TRIP and its extensions described below use such standard MACs,
it is worth noting that more efficient constructs have been proposed, e.g., Juels’
light-weight MAC scheme in [19]. Also, the use of PRNGs to obfuscate the tag
identity was first introduced by Weis, et al. [18].

The important part of the protocol encompasses steps 1-3. It consists of only
two rounds and two messages. The size of the first message determined by Tr

and the second – by Hid. In each case, the size is no greater than, say, 160 bits.
Note that Hid computed in step 2.3.2 and sent in step 3 does not actually

authenticate the tag in the sense of the tag actually being present. What step
2.3.2 achieves is a weaker notion which we call “identification”. It proves that
at some point, perhaps far in the past, the tag was involved in a protocol (with
a legitimate or a rogue reader) wherein it received, and replied to, the value Tr.

5 Informally, a narrowing attack occurs when the adversary queries a tag with a partic-
ular timestamp and then later tries to identify the same tag by querying a candidate
tag with a timestamp slightly above the previous one.

A Family of Dunces 51

[1] Tag ←− Reader: Tr

[2] Tag:a

– [2.1] δ = Tr − Tt

– [2.2] if (δ ≤ 0) or (Tr > Tmax)
– [2.2.1] Hid = PRNGj

i

– [2.3] else
– [2.3.1] Tt = Tr

– [2.3.2] Hid = HMACKi
(Tt)

[3] Tag −→ Reader: Hid

In real-time mode, the following steps take place immediately
following Step 3. In batch mode, they are performed later.

[4] Reader −→ Server: Tr, Hid

[5] Server:
– [5.1] s = LOOKUP (HASH TABLETr , Hid)
– [5.2] if (s == −1)
– [5.2.1] MSG=TAG-ID-ERROR
– [5.3] else
– [5.3.1] MSG=TAG-VALID /* can return G(Ks) instead */

[6] Server −→ Reader: MSG

a Note that it is imperative for the respective times taken by steps 2.2 and 2.3 to be
as close as possible. This is needed to prevent obvious timing attacks by malicious
readers (aimed at distinguishing among the two cases). This is the reason for PRNG
to be resolved as described in Section “Tag Requirements” above.

Fig. 1. YA-TRIP: Tag Identification

In other words, the tag’s reply in step 3 could be pre-recorded and replayed by
the adversary.

Recall that we assume private and authentic channels between readers and the
back-end server. Moreover, a server is assumed to “talk” only to non-compromised
(non-malicious) readers. This pertains to steps 4 and 6 above. Note also that the
specifics of step 5.3 depend on the application requirements. If the application
allows genuine readers to identify/track valid tags, the server could return a meta-
id of the tag: G(Ks) where G(.) is a suitable cryptographic hash with the usual
features. Otherwise, it suffices to simply inform the reader that the tag in question
is valid, as shown in Step 5.3.1 in Figure 1.

In batch mode, the reader interrogates a multitude of tags, collects their re-
sponses and, at a later time, off-loads the collected responses, along with the
corresponding Tr value(s) to the server. (Note that, if tag responses are col-
lected over multiple time intervals, the reader needs to group responses according
to the Tr value used.) The server then needs to identify the tags. In this set-
ting, YA-TRIP is highly advantageous. Even currently most efficient techniques

52 G. Tsudik

such as the MSW protocol [2], require the server to perform O(log n) pseudo-
random function (PRF) operations to identify a single tag. This translates into
O(n ∗ log n) operations to identify n tags. Whereas, YA-TRIP only needs O(n)
operations for the same task (since the same Tr-specific hash table is used for
all lookups and each lookup takes constant time).

2.3 Drawbacks

The YA-TRIP protocol, as presented above, has some potential drawbacks.
First, YA-TRIP does not provide tag authentication – it merely identifies a

tag. In order to authenticate itself, a tag needs to reply to a random challenge by
the reader. Obviously, Tr is not random, thus, the reply in step 3 only identifies
the tag. To remedy this, we extend the protocol in section 2.4.

Second, YA-TRIP is susceptible to a trivial denial-of-service (DoS) attack: an
adversary sends a wildly inaccurate (future) time-stamp to a tag and incapaci-
tates it either fully (if the time-stamp is the maximal allowed) or temporarily.
Although DoS resistance is not one of our initial goals, it is an important issue.
We address it in section 2.5.

Third, the protocol does not offer reader authentication or identification. We
do not consider this to be a drawback but a feature. Viewed from the application
perspective, the main purpose of reader/tag interaction is to identify (and, op-
tionally, authenticate) the tag. While a number of previously proposed protocols
manage (or attempt) to let the tag authenticate the reader, we claim that this is
ultimately a waste of time and resources. The reason for this claim is two-fold:

1. MORE ROUNDS: Authenticating a reader requires at least a three rounds
and three protocol messages; whereas, YA-TRIP is a two-round two-message
protocol. It is easy to see why a minimum of three rounds would be needed:
the reader always initiates interaction (round 1), the tag generates a chal-
lenge and sends it to the reader (round 2), and, the reader replies to the
challenge (round 3). Moreover, if the tag does not identify (and authenti-
cate) itself to the reader until the reader first authenticates itself to the tag,
a fourth round (and a fourth) message becomes necessary.

2. TAG STATE: To authenticate a reader, the tag MUST “remember” the
challenge it sends to the reader. This challenge represents state that must
be kept by the tag between rounds 2 and 3. However, this brings up the
possibility of the reader’s reply never arriving, i.e., what happens if the
protocol does not complete? The tag winds up in a state of “tilt” and requires
additional logic to recover. All this translates into needing more resources
on the tag.

Finally, the protocol makes an important assumption that a given tag is never
authenticated (interrogated) more than once within the same interval. This has
some bearing on the choice of the interval. A relatively short interval (e.g., a
second) makes the assumption realistic for many settings. However, it translates
into heavy computational burden for the server, i.e., frequent computation of
ephemeral tables. On the other hand, a longer interval (e.g., an hour) results

A Family of Dunces 53

in much lower server burden, albeit, it may over-stretch our assumption, since
a tag may need to be interrogated more than once per interval. One solution
is to sacrifice some degree of untraceability in favor of increased functionality,
i.e., allow a tag to iterate over the same time value (accept Tr = Tt) a fixed
number of times, say k. This would entail storing an additional counter on the
tag; once the counter for the same Tt reaches k, the tag refuses to accept Tr = Tt

and starts responding with random values as in Step 2.2 in the protocol. The
resulting protocol would be k-traceable – an adversary would be able to track
a tag over at most k sessions, with the same Tr value. (Note that the adversary
can track actively, by interrogating the tag, or passively, by eavesdropping on
interactions between the tag and valid readers.)

2.4 YA-TRAP: Adding Tag Authentication

Adding tag authentication to YA-TRIP is easy, requiring a few minor protocol
changes. First, we amend the initial reader→tag message to include a random
challenge Rr. Then, we include a MAC of both (reader and tag) challenges in
the tag’s reply message. Later, once the tag is identified by the server, it can be
authenticated by verifying the MAC. The identification step is the same as in
YA-TRIP. The resulting protocol (YA-TRAP) is shown in Figure 2.

Once the server identifies the tag (via LOOKUP), the extra cost of authen-
ticating it is negligible amounting to one HMAC operation. The additional cost
for the tag in YA-TRAP consists of one PRNG invocation and one HMAC to
compute Hauth.

Introducing Hauth into the protocol serves another useful purpose. In the
event that the tag has been previously de-synchronized (incapacitated) by a
rogue reader and its Tt value has been set far into the future, Hauth alone can be
used as a fall-back in order to identify and authenticate the tag. However, this
would require the server to perform O(n) operations – for each tag 0 ≤ j < n,
compute HMACKj (Rt, Rr) and compare with Hauth. This side-benefit of Hauth

is useful in mitigating DoS attacks. On the other hand, it puts a much heavier
load on the server which is arguably unimportant in the batch mode. Whereas, if
used in real time mode, an adversary who is observing (and timing) tag-reader
interaction might be able to discern a tag that has been previously desynchro-
nized. Consider the environment where a successful reader-tag interaction results
in some observable event, e.g., a door or a turnstile opens. Now, the adversary
can measure the delay between the tag→ reader message (step 3 in Figure 2)
and the observable event (which takes place after step 6). In the context of a
previously desynchronized tag, this delay would be appreciably longer than that
with a normal (synchronized) tag. Short of artificially padding the delay for all
tags to be the same as for a desynchronized tag (which is clearly undesirable),
there does not appear to be a workable solution.

We point out that the step from YA-TRIP to YA-TRAP is identical to that
in the work of Juels [17] where the same idea was used in a somewhat different
context.

54 G. Tsudik

[1] Tag ←− Reader: Tr, Rr

[2] Tag:
– [2.1] δ = Tr − Tt

– [2.2] if (δ ≤ 0) or (Tr > Tmax)
– [2.2.1] Hid = PRNGj

i

– [2.3] else
– [2.3.1] Tt = Tr

– [2.3.2] Hid = HMACKi
(Tt)

– [2.4] Rt = PRNGj+1
i

– [2.5] Hauth = HMACKi
(Rt, Rr)

[3] Tag −→ Reader: Hid, Rt, Hauth

– THEN, LATER:
[4] Reader −→ Server: Tr, Hid, Rr, Rt, Hauth

[5] Server:
– [5.1] s = LOOKUP (HASH TABLETr , Hid)
– [5.2] if (s == −1)
– [5.2.1] MSG=TAG-ID-ERROR
– [5.3] else if (HMACKs(Rt, Rr) �= Hauth)
– [5.3.1] MSG=TAG-AUTH-ERROR
– [5.4] else MSG=TAG-VALID

[6] Server −→ Reader: MSG

Fig. 2. YA-TRAP: Tag Authentication

2.5 YA-TRAP*: Adding DoS Resistance

Both YA-TRIP and YA-TRAP are susceptible to DoS attacks whereby a rogue
reader can easily incapacitate a tag by feeding it a “futuristic” (or even maxi-
mum) Tr value. Although it is not one of our initial goals (our emphasis is on
efficient identification and authentication), we recognize that DoS resistance is
an important issue in practice. Therefore, we now show how to extend YA-TRAP
to mitigate Denial-of-Service (DoS) attacks aimed at incapacitating tags.

DoS attacks on YA-TRIP/YA-TRAP are possible because a tag has no means
to distinguish a realistic (more-or-less current) time-stamp Tr from one that is
too futuristic. Since adding a clock to a tag is not an option, we need to rely on
external means of establishing timeliness.

Our approach to timeliness requires a reader to present an epoch token each
time it queries a tag, as part of the initial reader→tag message. The epoch token
allows a tag to ascertain that the reader-supplied Tr is not too far into the future.
This token changes over time, but its frequency of change (epoch) is generally
much slower than the unit of Tr or Tt time-stamps. For example, Tt and Tr

are measured in minutes, whereas, the epoch token might change daily. The

A Family of Dunces 55

main idea is that a current epoch token can be used to derive past epoch tokens
but cannot be used to derive future epoch tokens. A malicious or compromised
reader might possess the current token but will not obtain future tokens. Also,
since the epoch token changes slower than the time-stamp, multiple genuine
interactions between one or more readers and the same tag might use the same
epoch token but different (increasing) Tr values. We envisage the trusted server
serving as the distribution point for epoch tokens. Upon (or near) each epoch,
the server delivers (or securely broadcasts) the appropriate epoch token to all
genuine readers.

The choice of the epoch duration directly influences the degree of vulnerability
to DoS attacks. If the epoch is too long (e.g., a month), a rogue reader would be
able to put tags out of commission for at most a month. (Note that the current
epoch token is not secret; see below.) In contrast, if the epoch is very short
(e.g., a minute), a tag might be out of service for at most a minute, however,
the frequency of update becomes problematic since each reader would need to
obtain the current epoch token from the trusted server or some other trusted
repository.

The protocol (YA-TRAP*) is illustrated in Figure 3. DoS resistance in YA-
TRAP* is obtained by introducing a much abused and over-used cryptographic
primitive – a hash chain. A hash chain of length z is generated by starting with
an initial value (say, X) and repeatedly hashing it z times to produce a root
Hz(X). The trusted (and, in batch mode, off-line) server is assumed to have
initialized and generated the hash chain.

In addition to values mentioned in Section 1.4, each tag is initialized with a
root of the hash chain ET0 = Hz(X) of length z = Tmax/INT where Tmax is
as defined in Section 1.4 and INT is the epoch duration, e.g., one day.

At any given time, a tag holds its last time-stamp of use Tt and the its last
epoch token of use ETt. (Note that “last” does not mean current or even recent; a
tag may rest undisturbed for any period of time). When a reader queries a tag (in
step 1), it includes ETr, the current epoch token. The tag calculates the offset of
ETr as ν in step 2.2. Assuming a genuine reader, this offset represents the number
of epochs between the last time the tag was successfully queried and ETr. If Tr is
deemed to be plausible in the first two OR clauses of step 2.3, the tag computes
ν successive iterations of the hash function H() over its prior epoch token ETt

and checks if the result matches ETr. In case of a match, the tag concludes that
Tt is not only plausible but is at most INT time units (e.g., one day) into the
future. Otherwise, the tag assumes that it is being queried by a rogue reader
and replies with two random values: PRNGj

i and PRNGj+1
i , indistinguishable

from Hid = HMACKi(Tt) and HMACKi(Rt, Rr), respectively.
We note that, even if Hν(ETt) matches ETr, the tag cannot determine

whether Tr and ETr are current. The tag can only conclude that Tr is strictly
greater than Tt and Tr corresponds to the same epoch as ETr. We claim that
this feature has no bearing on the security of YA-TRAP*. Since the tag has
no clock, it cannot possibly distinguish between current and past-but-plausible
values or Tr and ETr. It can, however, establish with certainty that it has never

56 G. Tsudik

replied to the same Tr before and that the epoch corresponding to ETr is at
most current (i.e., not future).

Another detail is that the purpose of Step 2.3.2 in Figure 3 is to inhibit
the adversary’s (whether a passive eavesdropper or a malicious reader) ability
to differentiate between valid and invalid reader input, from the tag’s point of
view. However, it is NOT the purpose of Step 2.3.2 to obscure the value of ν
(see Section 2.6 below).

[1] Tag ←− Reader: Tr, Rr, ETr

[2] Tag:
– [2.1] δ = Tr − Tt

– [2.2] ν = � Tr/INT � − � Tt/INT �
– [2.3] if (δ ≤ 0) or (Tr > Tmax) or (Hν(ETt) �= ETr)
– [2.3.1] Hid = PRNGj

i ;

– [2.3.2] Rt = PRNGj+1
i

– [2.3.3] Hauth = PRNGj+2
i

– [2.4] else
– [2.4.1] Tt = Tr

– [2.4.2] ETt = ETr

– [2.4.3] Hid = HMACKi
(Tt)

– [2.4.4] Rt = PRNGj+1
i

– [2.4.5] Hauth = HMACKi
(Rt, Rr)

Steps [3-6] are the same as in YA-TRAP

Fig. 3. YA-TRAP*: DoS Resistance

Remaining DoS Attacks: DoS resistance in YA-TRAP* is limited by the mag-
nitude of the system-wide INT parameter. Once revealed by the server and
distributed to the genuine readers, the current epoch token ETr is not secret;
it can be easily snooped on by the adversary. Therefore, the adversary can still
incapacitate tags (however many it has access to) for at most the duration of
INT if it queries each victim tag with the current epoch token and the maximum
possible Tr value within the current epoch. We consider this kind of a limited
DoS attack to be a relatively small price to pay.

2.6 Discussion and Extensions

Forward Security: None of the aforementioned protocols is forward-secure [15,14].
Forward security would require periodic key evolvement. If the tag’s key (Ki)
evolves in a one-way fashion (e.g., via as suitable hash function), then, an adver-
sary who compromises a tag at time T cannot identify/link prior occurrences of
the same tag. We view forward security as a feature orthogonal to our main design

A Family of Dunces 57

goals. However, it is relatively easy to add forward security to all three protocols;
we sketch this out in the context of YA-TRAP* (refer to Figure 3):

– Introduce an additional operation for the tag:
– [2.4.6] Kν

i = Hν(Ki)
– Change the way the server computes ephemeral tables:

– Recall that, for each time-stamp Tc, the server pre-computes a table, where
each entry corresponds to a unique tag i. Instead of computing each table
entry as: HKi(Tc), the server computes it as: HKν

i
(Tc) where ν = � Tc/INT �

As a result of this simple modification, the tag’s key is evolved one per epoch
determined by INT and forward security is trivially achieved. The extra cost is
due to the ν hash operations on the tag in step 2.4.6. If a tag i is compromised
during epoch j, its key Kj

i is j-th evolution of the original key K0
i . Due to

one-way key evolvement, knowledge of Kj
i makes The adversary is faced with

the following decision problem: given Kj
i , distinguish HMACKs

i
(Rt, Rr) from a

random value.

Timing Attacks: We claim that YA-TRIP and YA-TRAP are immune to crude
timing attacks that aim to determine the tag’s state (whether it is desynchro-
nized) or its Tt value. From the timing perspective, Steps 2.2 and 2.3 in Figures 1
and 2) are indistinguishable since PRNG and HMAC are assumed to execute
in the same time. However, YA-TRAP* is clearly vulnerable to timing attacks.
Note that the execution the last OR clause in step 2.3 in Figure 3 is dependent
upon the offset of Tr which can be freely selected by the adversary. Consequently,
the adversary can mount a timing attack aimed at determining the epoch corre-
sponding to the tag’s last time-stamp of use (Tt). This is because the number of
repeated hash operations in step 2.3 is based on ν = � Tr/INT � − � Tt/INT �.
One obvious countermeasure is to artificially “pad” the number of iterated hashes
or introduce a random delay in tag’s reply to the reader. However, we consider
such countermeasures to be counterproductive as they increase protocol execu-
tion time which is undesirable, especially in batch mode.

As pointed out by Juels and Weis [10], YA-TRAP+ proposed by Burmester,
et al. [4] (as well as our YA-TRAP) is susceptible to timing attacks whereby the
adversary can distinguish between these two cases: (1) normal, synchronized tag
and (2) desynchronized tag, based on timing on the server side. This is possible
because (1) requires the server to perform a quick table lookup, whereas, (2)
requires it to perform a brute-force search. This attack is only applicable in real-
time mode since server operation in batch mode is not subject to being timed
by the adversary.

2.7 Efficiency Considerations

We now consider the respective costs of the three protocols described above.
YA-TRIP is very efficient for tags. When an acceptable Tr is received, the

computational burden on the tag is limited to a single keyed hash computation
(e.g., an HMAC). Otherwise, a tag is required to generate a pseudo-random value

58 G. Tsudik

(via PRNG), which, as discussed earlier, also amounts to a single keyed hash.
Again, we stress that the two cases are indistinguishable with respect to their
runtime. The reader is not involved computationally in YA-TRIP, YA-TRAP or
YA-TRAP*, since it neither generates nor checks any values.

YA-TRAP requires a tag to perform two extra keyed hash operations (for a
total of three): one to produce Rt in step 2.4 and the other – to compute Hauth

in step 2.5.
In YA-TRAP*, a tag also performs three keyed hash operations (in either step

2.3 or 2.4) and, in addition, needs to compute ν hashes over ETt. However, we
stress that, in normal operation, ν is typically either zero or one. (Note that, if
ν = 0, the notation H0(ETt) resolves to ETt).

In all three protocols, although the computational load on the server is rel-
atively heavy, most of the work is not done in real time. The real-time (on
demand) computation amounts to a simple table look-up. The server can pre-
compute ephemeral tables at any time. The amount of pre-computation depends
on available storage, among other factors.

The efficiency with respect to server load can be illustrated by comparison.
One simple and secure approach to untraceable tag identification and authenti-
cation entails the reader sending a random challenge Rr to the tag and the tag
replying with keyed hash (or encryption) of the reader’s challenge Rr and the
tag’s own nonce/challenge Rt, e.g., Hid−auth = HMACKi(Rr , Rt). . The reader
then forwards the reply – comprised of Hid−auth, Rr and Rt – to the server. In
order to identify the tag, the server needs to perform O(n) on-line keyed hashes
(or encryption operations), where n is the total number of tags. Although, on
the average, the server only needs to perform n/2 operations to identify the
tag, the work is essentially wasted, i.e., it is of no use for any other protocol
sessions. Whereas, in our case, one ephemeral table can be used in the context
of numerous (as many as n) protocol sessions.

The same issues arise when comparing YA-TRIP with the work of Molnar,
et al. [2]. Although the MSW protocol from [2] is much more efficient than the
näıve scheme we compared with above, it requires the tag to store O(logn) keys
and perform O(logn) pseudo-random function (PRF) operations (each roughly
equivalent to our keyed hash). In contrast, YA-TRIP only requires a single key
on the tag and a single PRF.

As far as cost considerations, our requirement for (small) non-volatile RAM
on the tag elevate the cost above that of cheapest tag types, i.e., less than 10
cents per tag. In this sense, YA-TRIP is more expensive than the one of the
MSW protocols which does not require any non-volatile RAM (it only needs a
physical random number generator). The other protocol presented in [2] requires
tags to have non-volatile storage for a counter.

2.8 Security Analysis?

No formal security analysis of YA-TRIP, YA-TRAP and YA-TRAP* is included
in this paper. However, we note that the security analysis in [6] is directly
applicable to YA-TRIP. With respect to YA-TRAP, its extra feature of tag

A Family of Dunces 59

authentication is orthogonal to tag identification in YA-TRIP. In fact, if we
strip tag identification from YA-TRAP, it becomes a trivial two message one-
way authentication protocol whereby a tag simply replies to a challenge from
the reader (Rr) with HMACKi(Rt, Rr) which is further randomized with tag’s
own nonce Rt. The security of this kind of authentication has been considered
in the literature.

Security of YA-TRAP* is less clear. It offers limited DoS-resistance by check-
ing the validity of the proffered epoch token (ETr). As pointed out above (at
the end of Section 2.5), YA-TRAP* still permits some limited DoS attacks and
the degree to which such attacks are possible is based on INT – the duration of
the authorization epoch. We consider this to be a reasonable trade-off between
security and functionality.

Some recent work by Juels and Weiss [10] examined the properties of YA-TRIP
as it originally appeared in [1]. They conclude that, in YA-TRIP, the adversary
can easily “mark” a victim tag by feeding it an arbitrary future time-stamp (Tr)
and later recognize/identify the same tag seeing whether it fails in an interaction
with a genuine reader. This “attack” makes two assumptions: (1) that the success
or failure of tag-reader interaction is observable by the adversary and (2) that the
desynchronized tag(s) is/are unique. While the second assumption is perhaps re-
alistic, the first one is not, at least in many practical settings. The first assumption
is unrealistic in, for example, warehouse or inventory settings or wherever the in-
teraction concludes without some publicly visible effect (such as a door opening).
We also note that, even if both assumptions hold, the claimed attack has limited
effect in the context of YA-TRAP* due to the DoS-resistance feature6.

3 Related Work

There is a wealth of literature on various aspects of RFID security and privacy;
see [11] for a comprehensive list. We consider only related work that seems
relevant for comparison with our approach, i.e., protocols that emphasize efficient
server computation, involve minimal 2-round reader-tag interaction, and aim to
reduce tag requirements and computation. (Of course, this rules out some other
notable and useful results.)

The first notable result is the set of MSW protocols by Molnar, et al. [2]
which we use in section 2.7 above in comparing the efficiency of our protocols.
The approach taken is to use hierarchical tree-based keying to allow for gradual
and efficient tag identification/authentication. Tree-based keying involves a tree
of degree k and depth t = logk(n) where n is the total number of tags. Each
tag holds t = logk(n) distinct keys and, upon being challenged by a reader,
responds with t MACs each based on a different key. The server can then iden-
tify/authenticate a tag with O(logk(n)) complexity. YA-TRIP and YA-TRAP
are more efficient for tags in terms of computation and storage since the num-
ber of on-tag cryptographic operations (1 and 2, respectively) and tag storage
6 We say “limited” since the attacker can still mark and recognize a tag, but, only within

a single epoch.

60 G. Tsudik

requirements (1 key in each) are independent of the total number of tags. YA-
TRAP* is less efficient: 3 cryptographic operations plus ν hashes to validate the
epoch token. However, in normal operation, ν is either zero or one. (It is zero
since a tag might be successfully and legitimately queried many times within one
epoch.) MSW protocols appear more efficient on the server side since t << n.
Nonetheless, if O(n) sensors are queried with the same Tr value, the total server
cost of MSW is O(n · logk(n)). In contrast, our server cost is always O(n) regard-
less of the number of tags queried. MSW protocols also have a security “feature”
whereby an adversary who compromises one tag, is able to track/identify other
tags that belong to the same families (tree branches) as the compromised tag.
This vulnerability of MSW protocols has been explored by Avoine, et al. [9].
The same concern does not arise in our protocols since no two tags share any
secrets. Finally, we note that MSW protocols are not easy to amend in order to
support forward security.

Based in part on the early (and preliminary) version of this work [1], Burmester,
et al. [4] came up with a secure universally-composable framework for RFID pro-
tocols. One of their sample protocols (called YA-TRAP+) is almost identical to
YA-TRAP and, although they were developed independently and (most likely)
concurrently, [4] was published earlier. As we mention above, in real-time mode,
YA-TRAP+ and YA-TRAP are susceptible to some timing attacks. However, we
note that, due to limited DoS-resistance, YA-TRAP* is not vulnerable to tim-
ing attacks, assuming that the server pre-computes all tables for each value of Tr

within the current epoch7.
Another proposal by Avoine and Oechslin (AO) [3] is similar in spirit, but

very different in technical details, from the protocols in this paper. The AO
approach involves offers built-in forward security (via one-way key evolvement
for each tag query). It is based on a previously proposed OSK (Ohkubo-Suzuki-
Kinoshita) protocol [5] coupled with Hellman’s time/memory trade-off technique
[8]. Because the tag’s key evolves for each query, an active attacker can incapac-
itate any tag by repeatedly querying it; albeit, the number of queries might be
large, as determined by the length of the hash chain, e.g., 210. Also, the AO and
OSK protocols do not offer tag authentication; like YA-TRIP they offer only
tag identification. It is simple to extend AO/OSK protocols to incorporate tag
authentication and DoS-resistance along the lines of our approach in YA-TRAP
and YA-TRAP*. Juels and Weis [10] show some potential vulnerabilities of the
AO/OSK protocols.

Acknowledgements

Many thanks to Stephan Engberg, David Molnar, Ari Juels, Xiaowei Yang and
Einar Mykletun for helpful input on early versions of this paper. We are also
grateful to the PET’07 anonymous referees for their insightful comments.
7 This would entail server maintaining up to INT distinct hash tables and looking up

the Hid value over all of them. If hash tables are looked up in random order, the overall
lookup time will be similarly randomized. Thus, timing attacks would not apply.

A Family of Dunces 61

References

1. Tsudik, G.: Yet Another Trivial RFID Authentication Protocol, IEEE PerCom
(Work-in-Progress Session) (March 2006)

2. Molnar, D., Soppera, A., Wagner, D.: A Scalable, Delegatable Pseudonym Protocol
Enabling Ownership Transfer of RFID Tags. In: Preneel, B., Tavares, S. (eds.) SAC
2005. LNCS, vol. 3897, pp. 276–290. Springer, Heidelberg (2006)

3. Avoine, G., Oechslin, P.: A Scalable and Provably Secure Hash-Based RFID Pro-
tocol, PerSec Workshop (March 2005)

4. Burmester, M., de Medeiros, B., Van Le, T.: Provably Secure Ubiquitous Sys-
tems: Universally Composable RFID Authentication Protocols, IEEE/Createnet
Securecomm (September 2006)

5. Ohkubo, M., Suzuki, K., Kinoshita, S.: Efficient hash-chain based RFID privacy
protection scheme. In: UBICOMP Workshop on Privacy: Current Status and Fu-
ture Directions (2004)

6. Herzberg, A., Krawczyk, H., Tsudik, G.: On Traveling Incognito. In: IEEE Work-
shop on Mobile Systems and Applications (December 1994)

7. Ateniese, G., Herzberg, A., Krawczyk, H., Tsudik, G.: On Traveling Incognito.
Computer Networks 31(8), 871–884 (1999)

8. Hellman, M.: A cryptanalytic time-memory tradeoff. IEEE Transactions on Infor-
mation Theory 26, 401–406 (1980)

9. Avoine, G., Dysli, E., Oechslin, P.: Reducing Time Complexity in RFID Systems.
In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, Springer, Heidelberg
(2006)

10. Juels, A., Weis, S.: Defining Strong Privacy for RFID, IACR eprint (April 2006)
11. Avoine, G.: Security and Privacy in RFID Systems: Bibliography (February 2007),

http://lasecwww.epfl.ch/∼gavoine/rfid/
12. Steiner, J., Neuman, B., Schiller, J.: Kerberos: An Authentication Service for Open

Network Systems. In: USENIX Winter 1988 Technical Conference, pp. 191–202
(1988)

13. Redl, S., Weber, M., Oliphant, M.: GSM and Personal Communications Handbook,
Artech House (May 1998) ISBN 13: 978-0890069578

14. Krawczyk, H.: Simple forward-secure signatures from any signature scheme. In:
ACM Conference on Computer and Communications Security, pp. 108–115. ACM
Press, New York (2000)

15. Anderson, R.: Two remarks on public-key cryptology, Invited Talk. In: ACM Con-
ference on Computer and Communications Security, ACM Press, New York (1997)

16. Tan, C., Sheng, B., Li, Q.: Serverless Search and Authentication Protocols for
RFID. In: IEEE PerCom’2007, IEEE Computer Society Press, Los Alamitos (2007)

17. Juels, A., Syverson, P., Bailey, D.: High-Power Proxies for Enhancing RFID Privacy
and Utility. In: Danezis, G., Martin, D. (eds.) PET 2005. LNCS, vol. 3856, Springer,
Heidelberg (2006)

18. Weis, S., Sarma, S., Rivest, R., Engels, D.: Security and Privacy Aspects of Low-
Cost Radio Frequency Identification Systems. In: Security in Pervasive Computing
Conference (SPC’03) (March 2003)

19. Juels, A.: Yoking-Proofs for RFID Tags. In: Workshop on Pervasive Computing
and Communication Security (PerSec) (2004)

http://lasecwww.epfl.ch/~gavoine/rfid/

Louis, Lester and Pierre:

Three Protocols for Location Privacy

Ge Zhong, Ian Goldberg, and Urs Hengartner

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, ON, Canada N2L 3G1
{gzhong,iang,uhengart}@cs.uwaterloo.ca

Abstract. Location privacy is of utmost concern for location-based ser-
vices. It is the property that a person’s location is revealed to other
entities, such as a service provider or the person’s friends, only if this
release is strictly necessary and authorized by the person. We study how
to achieve location privacy for a service that alerts people of nearby
friends. Here, location privacy guarantees that users of the service can
learn a friend’s location if and only if the friend is actually nearby. We
introduce three protocols—Louis, Lester and Pierre—that provide loca-
tion privacy for such a service. The key advantage of our protocols is
that they are distributed and do not require a separate service provider
that is aware of people’s locations. The evaluation of our sample im-
plementation demonstrates that the protocols are sufficiently fast to be
practical.

1 Introduction

The ubiquity of cellphones has led to the introduction of location-based services,
which let cellphone users benefit from services that are tailored to their current
location. For example, individuals can learn about interesting nearby places or
get directions to a target location. Location privacy is of utmost concern for such
location-based services, since knowing a person’s location can leak information
about her activities or her interests. Therefore, a person’s location should be
revealed to other entities only if this release is strictly necessary and authorized.

The potential of location-based services, together with rising interest in social-
networking applications, has led to the introduction of buddy-tracking applica-
tions. For example, Boost Mobile, a US cellphone service targeted at young
people, offers the Loopt Service [14], which alerts users of nearby friends. The
drawback of the Loopt Service is that it is bound to a particular cellphone
network and wireless technology. MIT’s iFIND project [15] works around this
problem by introducing a distributed buddy-tracking application, where a per-
son’s WiFi device determines its location and shares this information with the
person’s friends. While it is possible to exploit this approach for alerting people
of nearby friends, its disadvantage is that the friends always learn each other’s
location, regardless whether they are actually nearby; that is, the approach may

N. Borisov and P. Golle (Eds.): PET 2007, LNCS 4776, pp. 62–76, 2007.

Louis, Lester and Pierre: Three Protocols for Location Privacy 63

reveal more information than desired. What we really want is a distributed
buddy-tracking application where users (and their devices) can learn informa-
tion about their friends’ locations if and only if their friends are actually nearby.
In the rest of this paper, we call this problem the nearby-friend problem.

We present three protocols—Louis, Lester and Pierre1—for solving the
nearby-friend problem. The Louis protocol requires a semi-trusted third party
that does not learn any location information. The Lester protocol does not need
a third party, but has the drawback that a user might be able to learn a friend’s
location even if the friend is in an area that is no longer considered nearby by the
friend. However, this can happen only if the user is willing to invest additional
work. The Pierre protocol does not have this disadvantage at the cost of not
being able to tell the user the precise distance to a nearby friend.

Our protocols can run on wireless devices with limited communication and
computation capabilities. The Louis protocol requires four communication steps,
whereas the Lester and Pierre protocols require only two steps. Furthermore,
the evaluation of our sample implementation shows that the cost of running our
protocols is comparable to the cost of setting up a TLS [7] connection.

The rest of this paper is organized as follows. In section 2, we discuss previous
approaches to solve the nearby-friend problem. Our protocols exploit homomor-
phic encryption, which we review in section 3. We present the Louis, Lester and
Pierre protocols in sections 4, 5, and 6, respectively, and compare their features
in section 7.

2 Related Work

Location cloaking has been a popular approach for providing location privacy
[5,9,10,16]. Here, an individual’s device or a third party cloaks the individual’s
location before giving it to the provider of a location-based service. Cheng et
al. [5] study location cloaking for a service that alerts people of nearby friends.
For each individual, the service provider knows only that the individual is within
a particular region, but not where exactly. The authors develop a metric for
describing the quality of an answer received from the service. This metric allows
an individual to trade off privacy for better answer quality. A drawback of this
approach is that the service provider learns some location information. Our
protocols do not require such a third party. (In the Louis protocol, the third
party does not learn any location information.) Furthermore, if a friend is nearby,
our protocols will always return a positive answer and there is no doubt about
the quality of the answer.

The nearby-friend problem is an instance of a secure multiparty computation
problem, where multiple parties jointly compute the output of a function without
learning each other’s inputs. We next examine two previous approaches based on
secure multiparty computation that are applicable to solving the nearby-friend
problem.

1 Our protocols are named after three former residents of 24 Sussex Drive, Ottawa.

64 G. Zhong, I. Goldberg, and U. Hengartner

Køien and Oleshchuk [12] present a secure two-party protocol for the point-
inclusion problem. The protocol allows Alice to learn whether a point chosen
by Bob is in a polygon determined by Alice, without Bob revealing the point
to Alice and without Alice revealing the polygon to Bob. We could exploit this
protocol for letting Alice know whether Bob is nearby. Namely, Alice determines
the circle around her current location that corresponds to the area that she
considers nearby and approximates the circle with a polygon; Bob picks the
point that corresponds to his current location. However, Køien and Oleshchuk’s
protocol has a flaw: Alice can learn Bob’s location by choosing a degenerate
polygon. For example, if there are only two different edges in the polygon and
all the other edges are identical to one of them, Alice will usually be able to
solve a system of linear equations to determine Bob’s location. Bob cannot detect
degenerate polygons, assuming the underlying encryption scheme is semantically
secure, so this protocol is not adequate for solving the nearby-friend problem.

Atallah and Du [1] also study the point-inclusion problem. Their protocol
lets both Alice and Bob learn whether Bob’s point is in Alice’s polygon. The
protocol is based on solving the secure two-party scalar product problem and the
secure two-party vector dominance problem [1]. With the help of a semi-trusted
third party, the first problem can be solved in three communication steps [8]. The
solution of the second problem is based on solving Yao’s millionaire problem [22].
The most efficient constant-round protocol for solving this problem requires six
communication steps [3]. With a semi-trusted third party, the problem can be
solved in three communication steps [4]. Our Louis protocol, which needs a semi-
trusted third party, lets Alice know in four communication steps whether Bob
is nearby and requires one additional step to inform Bob of this result. The
Lester and Pierre protocols each require two communication steps to let Alice
learn whether Bob is nearby. To let Bob know whether Alice is nearby, these
protocols also require one additional step. In summary, to achieve the same
result as Atallah and Du’s protocol, our protocols require fewer communication
steps and the Lester and Pierre protocols do not need a third party at all.

3 Homomorphic Encryption

Our protocols use the techniques of public-key cryptography, but we require the
cryptosystems used to have a special algebraic property: that they are additive
homomorphic. An additive homomorphic cryptosystem is one in which, given
E(m1) and E(m2), one can efficiently compute E(m1 + m2). Our protocols use
two of these systems, which we review here.

3.1 Paillier

The first of these systems is the Paillier cryptosystem [18]. Like the RSA
cryptosystem, a user Alice selects random primes p and q and constructs
n = pq; plaintext messages are elements of Zn. Unlike RSA, however, cipher-
texts are elements of Zn2 . Alice picks a random g ∈ Z

∗
n2 and verifies that

Louis, Lester and Pierre: Three Protocols for Location Privacy 65

μ = (L(gλ mod n2))−1 mod n exists, where λ = lcm(p − 1, q − 1) and L(x) =
(x − 1)/n. Alice’s public key is then (n, g) and her private key is (λ, μ).

To encrypt a message m, another user Bob picks a random r ∈ Z
∗
n and

computes the ciphertext c = E(m) = gm · rn mod n2. To decrypt this message,
Alice computes D(c) = L(cλ mod n2) · μ mod n, which always equals m.

Given E(m1) = gm1 · rn
1 mod n2 and E(m2) = gm2 · rn

2 mod n2, Bob can easily
compute E(m1 + m2) = E(m1) · E(m2) mod n2 = gm1+m2 · (r1r2)n mod n2.

Note that if Bob does not trust Alice enough to generate her Paillier modulus
correctly, he can insist she prove its validity (that is, that it is the product of
exactly two nearly equal primes) [13].

3.2 CGS97

Cramer, Genarro and Schoenmakers [6] present the CGS97 scheme. This is a
variant on El Gamal, where we have (public) large primes p and q such that
q|p − 1. Plaintexts are elements of Zq and ciphertexts are elements of Zp × Zp.
Alice’s private key is a random element a ∈ Zq and her public key is A =
ga mod p.

To encrypt a message m, Bob picks a random r ∈ Zq and computes (c1, c2) =
E(m) = (gr mod p, Ar+m mod p). To decrypt this message, Alice finds Am =
c2 · c−a

1 mod p and computes m as the discrete log of that value with the base of
A, mod p. Note that this can only be done if M , the number of possible plaintext
messages, is small. In that event, the Pollard lambda, or “kangaroo”, method
[19] can find m in time O(

√
M).

Given E(m1) = (gr1 mod p, Ar1+m1 mod p) and E(m2) = (gr2 mod p, Ar2+m2

mod p), Bob can easily compute E(m1 + m2) = (gr1+r2 mod p, Ar1+r2+m1+m2

mod p) by pointwise multiplication mod p.

4 The Louis Protocol

There are three participants in the Louis protocol: Alice, Bob and Trent. Alice
and Bob are friends and Alice wants to know whether Bob is nearby. Alice
considers Bob nearby if he is within a circle of some radius r centered around
Alice. Alice informs Bob of r and Bob can refuse to participate in the protocol
if he considers it to be too large. Trent acts as a third party and helps Alice and
Bob decide whether they are nearby. Unlike other protocols for implementing
location-based services that exploit third parties [5,9,10,14], the Louis protocol
does not allow Trent to learn any location information about either Alice or Bob.

Our protocol consists of two phases. In the first phase, Alice and Bob jointly
solve the nearby-friend problem and Alice learns whether Bob is nearby. If this
is the case, Alice and Bob inform each other of their locations in the (optional)
second phase of the protocol. Alice and Bob cannot learn each other’s locations
if they are not nearby.

Alice and Bob can misbehave and input fake locations into the protocol.
However, the detection of misbehaviour by one of them will likely affect their

66 G. Zhong, I. Goldberg, and U. Hengartner

Trent

6(u,v)
(x,y)

5

1

2 Alice
Bob

3

4

Fig. 1. System model of the Louis protocol. The dashed arrows indicate the optional
second phase.

friendship, so they are less likely to misbehave. We discuss the detection of
misbehaviour by Alice or Bob, and of cheating by the third party Trent in
section 4.3.

4.1 Protocol Description

We assume that a location can be mapped to two-dimensional coordinates and that
the mapping is known to Alice and Bob. Let Alice’s location be (x, y) and Bob’s
be (u, v). By the definition above, they are nearby if

√
(x − u)2 + (y − v)2 < r.

Equivalently, we can check the sign of d = (x − u)2 + (y − v)2 − r2. In particular,
Bob is near Alice if d < 0.

Figure 1 presents the two communication channels used in our system model.
The first is between Alice and Bob, and the second is between Alice and Trent.
Alice also acts as a relay of the communication between Bob and Trent. The
benefit of this approach is to hide Bob’s identity from Trent, thus improving
privacy. We assume that the two secure communication channels are set up
before our protocol begins.

The protocol consists of two phases. The first phase lets Alice determine
whether Bob is nearby. If this is the case, the (optional) second phase lets Alice
and Bob learn each other’s locations. In our protocol, EA(·) is the Paillier addi-
tive homomorphic encryption function using Alice’s public key, ET (·) is a (non-
homomorphic) public-key encryption function using Trent’s public key, H(·) is
a cryptographic hash function, sigA(m) is Alice’s signature on message m, and
similarly with sigT (m).

1. First phase: Alice determines her location (x, y) and her desired radius r,
and picks a random salt sA.
Alice→Bob: EA(x2 + y2), EA(2x), EA(2y), r, H(x ‖ y ‖ sA)

2. Bob checks the value of r. If he thinks r is too large, he aborts the protocol.
Otherwise, he determines his location (u, v), picks a random value k and
computes

EA(d + k) =
EA(x2 + y2) · EA(u2 + v2) · EA(k)

(EA(2x))u · (EA(2y))v · EA(r2)
,

Bob also chooses a random salt sB.
Bob→Alice: EA(d + k), ET (k), H(u ‖ v ‖ sB), H(k).

3. Alice decrypts EA(d + k).
Alice→Trent: d + k, ET (k), sigA(d + k), sigA(ET (k))

Louis, Lester and Pierre: Three Protocols for Location Privacy 67

Table 1. Runtime of the Louis protocol

Alice Bob Trent

TLS connection time 516 ± 2 ms 255 ± 4 ms 256 ± 2 ms

Computation time 635 ± 4 ms 175 ± 4 ms 41 ± 0.6 ms

4. Trent decrypts ET (k) and verifies Alice’s signatures. Next, he computes d. If
d < 0, Trent sets answer = ′YES′ else answer = ′NO′.
Trent→Alice: answer, sigT (answer ‖ sigA(d + k) ‖ sigA(ET (k))).

5. Alice verifies Trent’s signature. Next, if answer == ′YES′, she knows that
Bob is nearby. Alice terminates the protocol if Bob is not nearby or if only
the first phase of the protocol is run. Otherwise:

Second phase: Alice reveals her location to Bob:
Alice→Bob: answer, d+k, sigA(d+k), sigA(ET (k)), sigT (answer ‖ sigA(d+
k) ‖ sigA(ET (k))), x, y, sA.

6. Bob verifies all signatures. He then computes H(x ‖ y ‖ sA) and compares
the hash value with the one provided by Alice in step 1. He also uses (x, y)
to compute d + k and compares it to the value received. If the values do not
match, Bob aborts the protocol. Otherwise Bob reveals his location to Alice:
Bob→Alice: u, v, sB, k.

7. Alice computes H(u ‖ v ‖ sB) and H(k) and compares the values with the
hash values provided by Bob in step 2. Alice also computes d + k based on
(x, y), (u, v), and k and verifies whether it equals the decrypted value of
EA(d + k).

Note that our protocol checks whether d < 0. In the Paillier cryptosystem,
d will be an element of Zn, so to check this condition, we ensure that n is
sufficiently large, and we say d < 0 if n/2 < d < n.

4.2 Measurements

We implemented our protocols using the OpenSSL [17] and NTL [21] libraries.
We chose RSA for the non-homomorphic encryption and signature functions.
The key sizes of all the cryptographic functions are 2048 bits. Our hash function
is SHA-256, and the cipher stack in TLS is AES256 in CBC mode with ephemeral
Diffie-Hellman key exchange. (The ephemeral keys can be used in the Lester and
Pierre protocols, below.) We evaluated these protocols on a 3.0 GHz Pentium 4
desktop. We ran the protocol one hundred times and measured TLS connection-
setup time and overall computation time for each protocol participant. Table 1
shows our results.

With 2048-bit keys, it takes about a quarter second to set up a TLS con-
nection. Alice initiates two TLS connections, which takes about half a second.
Trent’s computation time is very small. The major burden is on Alice, who takes
about 0.6 s; Bob’s computation time is less than one third of Alice’s. In short,
if a mobile device can set up a TLS connection, it should be able to finish the
Louis protocol in comparable time or shorter.

68 G. Zhong, I. Goldberg, and U. Hengartner

4.3 Analysis

The Louis protocol can directly detect scenarios where Alice and Bob reveal
other locations than the ones they committed to. We next explain how Alice
and Bob can discover other kinds of misbehaviour.

Alice detects misbehaviour by Bob or Trent. If Alice detects suspicious be-
haviour, such as not spotting nearby Bob though she was told that he is nearby,
and if only the first phase of the protocol has been run, Alice asks Bob to exe-
cute the second phase. If Bob refuses, Alice will suspect that Bob misbehaved.
Otherwise, Alice proceeds as follows:

If Alice is told by Trent that Bob is nearby, but then fails to spot Bob at his
released, nearby location, Alice will realize Bob’s misbehaviour. If the released
location is not nearby, Alice asks Bob to reveal the random values that he used
in his calculations and repeats the calculations. If the results are not identical
to the ones released by Bob, Bob must have misbehaved. Otherwise, there was
cheating by Trent.

If Alice is told by Trent that Bob is not nearby, but then spots him in her
vicinity, she proceeds in a similar way. Namely, if the location released by Bob
is not nearby, Bob must have misbehaved. If it is nearby, Alice repeats Bob’s
calculations, as explained above, to detect cheating by Trent.

Finally, if step 7 in the protocol fails, Alice also repeats Bob’s calculations to
discover who misbehaved.

Bob detects misbehaviour by Alice or Trent. If the second phase of the protocol
is not run, Bob does not learn any location information about Alice, which makes
it impossible for him to detect misbehaviour. However, Bob can refuse to answer
multiple queries from Alice if they arrive within a very short time. These queries
could be part of a probing attack, where Alice knows a set of likely locations for
Bob and uses each of them for invoking the protocol.

If the second phase of the protocol is run and Bob detects suspicious be-
haviour, Bob uses mechanisms similar to Alice’s to discover misbehaviour.

Alice or Bob collude with Trent. Our protocol cannot detect collusion, where
Trent tells the value of d to one of the parties. However, Alice and Bob can
jointly choose the third party, which reduces the risk of collusion.

5 The Lester Protocol

The Louis protocol allows Alice and Bob to learn each other’s locations if and
only if they are nearby, but it requires the participation of Trent. In our second
protocol, Lester, we do away with the need for Trent. However, this comes at
some small costs. First, the information disclosure is now only one-way; that
is, Alice learns about Bob’s location, but not vice versa. Alice and Bob could
of course run the protocol a second time, with the roles reversed, to mutually
exchange information. (Note that this requires only one extra message, since the
resulting two messages from Bob to Alice can be combined.) Second, Alice learns
less exact information about Bob; she only learns the distance between them,
although this may actually be a benefit, depending on the context.

Louis, Lester and Pierre: Three Protocols for Location Privacy 69

5.1 Protocol Description

This protocol uses the CGS97 cryptosystem of section 3.2. Recall that this cryp-
tosystem has an unusual property: the amount of work Alice must do in order
to decrypt a message depends on the number of possible messages. We use this
property to our advantage in this protocol.

The Lester protocol is very simple. Let a and b be Alice and Bob’s private
keys, and A = ga and B = gb be their public keys. Note that these keys may be
ephemeral; if Alice and Bob are communicating via TLS [7], for example, they
can use the key pairs from an ephemeral Diffie-Hellman key exchange. Alice and
Bob can each calculate C = Ab = Ba. Alice sends Bob EA(x2 + y2), EA(2x),
EA(2y). Bob picks a workfactor t (see below) and a random salt s of length t,
and sends to Alice t, EA(b · (D · 2t + s)), where D = (x − u)2 + (y − v)2 is the
square of the distance between Alice and Bob. Alice receives this message, and
can calculate Ab·(D·2t+s) = CD·2t+s.

If Alice wants to learn whether Bob is closer than some threshold distance r
away, she uses the kangaroo method [19] to determine D · 2t + s if it is in the
range [0, r2 · 2t]. This can be done in time O(r · 2t/2) and space O(t log r). Other
methods to calculate discrete logarithms, such as baby-step-giant-step [20], can
solve this problem with the same runtime, but with exponentially larger space
requirements. If this step is successful, shifting the result by t bits yields D.
The effect of Bob including a factor of b in his response to Alice is that Alice’s
discrete logarithm calculation is to the base of the ephemeral C rather than A.
This prevents Alice from doing a certain amount of reusable precomputation
derived from a predetermined base.

Bob should choose t so that he is comfortable with the amount of work Alice
would have to do in order to discover the distance between them. This will likely
depend on things Bob knows about his friend Alice, such as the computational
capacity of Alice’s cellphone.

5.2 Measurements

The runtime of the Lester protocol is dominated by Alice’s computation of the
discrete log of CD·2t+s to the base of C. In Figure 2, we plot this time against
the workfactor value t, chosen by Bob. For fixed r, we expect this runtime to
scale as 2t/2 and the log plot shows that this is indeed the case. This gives Bob a
fair amount of control over the amount of work Alice will need to do to find the
distance between them: in our setup, if t = 20, Alice needs only about a quarter
of a second, and if t = 40, Alice needs a few minutes of computation time. If this
is not enough, Bob could choose even larger values, and the exponential nature
of the runtime means he can make Alice work a very long time with only a small
increase in t.

We measured Bob’s computation time, on the other hand, to be 175 ± 2 ms,
comparable to that of the Louis protocol, and this value is independent of t.

70 G. Zhong, I. Goldberg, and U. Hengartner

 0

 50

 100

 150

 200

 250

 20 24 28 32 36 40

co
m

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

workfactor t

-3
-2
-1
 0
 1
 2
 3
 4
 5
 6
 7
 8

 20 24 28 32 36 40

lo
g 2

(c
om

pu
ta

tio
n

tim
e)

workfactor t

Fig. 2. Alice’s computation time in the Lester protocol

5.3 Analysis

This protocol has no way to detect if Alice or Bob use incorrect locations as
their input. This could allow Alice to confirm a guess of Bob’s location simply
by entering that guess as her own location and seeing if the protocol successfully
finds Bob to be very nearby. Alice could also check specific ranges of large values
of D. For example, if locations are measured in metres, she could check whether
Bob is between 10000 and 11000 m away for about the same cost as checking
whether he is between 0 and 4600 m away. Of course, the former ring represents
a much more widely spread out geographical area, and knowing only that Bob is
in that ring probably gives less useful information to Alice. An exception is when
Alice knows a few places that Bob is likely to be: his home, his work, etc.; she can
then confirm those guesses with minor difficulty. Note that Bob has a little bit of
extra power: not only can he choose a large t if he suspects Alice is probing for
his exact location, but he can also effectively refuse to participate in the protocol,
without letting Alice know. He does this by returning an unconditional negative;
that is, an encryption of a random value instead of the correct response. This
makes it extremely probable that Alice’s discrete log computation will fail. If
Bob wants to be extra careful, he should be sure to avoid revealing he has done
this to side channels, such as timing differences [11]. Conversely, he could return
an unconditional positive by returning an encryption of a small number rather
than the result of his calculation. If Alice cares, she can prevent the latter by
adding a random value k to her x2 + y2 and dividing Bob’s response by Ck·2t

.
Of course, as in the Louis protocol, Alice is likely to notice if Bob claims to be
nearby but is not.

Another downside of this protocol is that Bob only has very coarse control
over the threshold distance; he can choose how much work Alice would have to
do in order to discover that he was, say, 500 metres away, but with only twice
as much work, Alice could discover that Bob was 1000 metres away. A minor
modification to the Lester protocol, however, can make Alice’s work be quadratic

Louis, Lester and Pierre: Three Protocols for Location Privacy 71

Alice

D = 0

D = 1 D = 2

r

r r

Bob

Bob

Bob

Bob

D = 5r

D = 1r

Bob

r

Fig. 3. Grid distances in the Pierre protocol. The x and y distances between Alice and
Bob are measured in grid cells (integral units of r), and Dr = (Δxr)

2 + (Δyr)
2. Alice

can determine whether Bob is in the dark grey, medium grey, or light grey area, but
no more specific information than that.

in the threshold distance instead of linear. Instead of the CGS97 cryptosystem,
the Boneh-Goh-Nissim cryptosystem [2] can be used. This protocol has the same
properties (additive homomorphic; decryption takes O(

√
M) time) as CGS97,

but also allows calculations of encryptions of quadratic functions, in addition to
linear ones. With this system, Bob could compute EA(D2 · 2t + s) for a random
salt s between 0 and (2D + 1)2t − 1, and Alice’s work to find the distance to
Bob will be O(r2 · 2t/2).

6 The Pierre Protocol

Our third protocol, Pierre, solves the above problems with the Lester protocol
and gives Bob more confidence in his privacy. On the other hand, if Alice and
Bob are nearby, the Pierre protocol will inform Alice of that fact, but will give
her much less information about Bob’s exact location.

6.1 Protocol Description

In this protocol, Alice picks a resolution distance r, roughly analogous to the
threshold distance r in the previous protocols. Alice and Bob then express their
coordinates in (integral) units of r; that is, if Alice’s true position is (x, y), then
for the purposes of this protocol, she will use coordinates (xr , yr) = (�x

r �, � y
r �),

and similarly for Bob. This has the effect of dividing the plane into a grid, and
Alice and Bob’s location calculations only depend on the grid cells they are in;
see Figure 3.

72 G. Zhong, I. Goldberg, and U. Hengartner

Table 2. Runtime of the Pierre protocol

Alice Bob

TLS connection time 256 ± 3 ms 257 ± 1 ms

Computation time 384 ± 4 ms 354 ± 3 ms

This protocol can use either of the homomorphic cryptosystems we have men-
tioned. It turns out that CGS97 is slightly more efficient, so we will use the no-
tation of that system. As with the Lester protocol, Alice and Bob’s public keys
can be the ephemeral ones generated during TLS setup.

Alice sends to Bob r, EA(x2
r + y2

r), EA(2xr), EA(2yr). Bob picks three random
elements ρ0, ρ1, ρ2 of Z

∗
p and replies with EA(ρ0 · Dr), EA(ρ1 · (Dr − 1)), EA(ρ2 ·

(Dr − 2)), where Dr = (xr − ur)2 + (yr − vr)2 is the square of the distance
between Alice and Bob, in integral units of r. As in the Lester protocol, if
Bob is uncomfortable with Alice’s query, either because of her choice of r, her
frequency of querying, or some other reason, Bob can reply with encryptions of
three random values, ensuring Alice will not think he is nearby.

Note that ρ0 · Dr = 0 if Alice and Bob are in the same grid cell and is a
random element of Z

∗
p otherwise. Similarly, ρ1 · (Dr − 1) = 0 if Alice and Bob

are in adjacent grid cells and random otherwise, and ρ2 · (Dr − 2) = 0 if Alice
and Bob are in diagonally touching grid cells and random otherwise.

In CGS97, it is easy for Alice to check whether a received ciphertext (c1, c2)
is an encryption of 0: this is the case exactly when c2 = c1

a mod p, where a
is Alice’s private key. Therefore, with this protocol, Alice can tell when Bob is
in the same, adjacent, or diagonally touching grid cell (and learns which is the
case), but she learns no more specific information than that.

6.2 Measurements

We measured the computation time of the Pierre protocol using 2048-bit keys
for both TLS and CGS97; the results are shown in Table 2. For comparison, we
also show the time to set up an TLS connection between Alice and Bob. The
computation times shown are for the worst-case situation; that is, Alice and Bob
are not nearby.

We can see that the computational cost of the Pierre protocol is only slightly
more expensive than setting up TLS; this suggests that the protocol would be
reasonable to run on mobile devices.

6.3 Analysis

As with the other protocols, we cannot prevent Alice from using an incorrect
location in order to try to confirm a guess of Bob’s location. However, in the
Lester protocol, as mentioned above, Alice can try to verify a number of guesses
with a single query to Bob. This is not the case in the Pierre protocol; each
protocol run tells Alice only whether Bob is near the location she entered, and
she can extract no other information from Bob’s reply.

Louis, Lester and Pierre: Three Protocols for Location Privacy 73

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

pr
ob

ab
ili

ty
 o

f
su

cc
es

s

true distance (*r)

Louis
Lester
Pierre

Fig. 4. Success probabilities of the three protocols, as a function of the actual distance
between Alice and Bob (as a multiple of r)

Like the Lester protocol, the Pierre protocol can gain a minor benefit from
using the Boneh-Goh-Nissim cryptosystem. Bob can combine two of his responses
and reply with, for example, EA(ρ1 · Dr · (Dr − 1)), EA(ρ2 · (Dr − 2)). If the first
ciphertext decrypts to 0, then Alice knows that Dr is either 0 or 1, but not
which. This gains Bob a small amount of privacy, and at the same time slightly
decreases the size of his reply, even taking into account that Boneh-Goh-Nissim
is elliptic curve based.

A more dramatic benefit could be gained by using a ring homomorphic encryp-
tion system; that is, a system in which, given E(x) and E(y), one can efficiently
compute both E(x + y) and E(x · y). With such a system, Bob could reply with
the single ciphertext EA(ρ · Dr · (Dr − 1) · (Dr − 2)). Bob could also include
more factors of (Dr − i) inside the encryption while reducing r and be able to
more accurately approximate a circle around Alice by using more grid cells of
a smaller size. Unfortunately, no secure ring homomorphic cryptosystem is yet
known to exist.

7 Comparison of the Protocols

In each of our three protocols we say Alice succeeds if she discovers Bob is nearby.
In some of the protocols, if Alice succeeds, she also learns extra information
about Bob’s location. We have set up each of our three protocols so that if
Alice and Bob are within a distance r of each other, Alice will succeed. In the
Louis protocol, the inverse is also true: if Alice and Bob are slightly more than
distance r apart, Alice will not succeed. This behaviour does not match realistic
use models, however; it is unlikely that Alice will want to learn if Bob is 199 m
away, but not if Bob is 201 m away. In our other two protocols, the probability
that Alice succeeds does not fall to 0 as soon as Bob is slightly further than r
away; rather, it gradually drops to 0 as Bob gets further, reaching 0 at some

74 G. Zhong, I. Goldberg, and U. Hengartner

Table 3. Feature comparisons of our three protocols

Protocol Louis (first Louis (both Lester Pierre
phase only) phases)

Extra information none Bob’s exact Bob’s exact Bob’s grid
learned by Alice location distance cell distance

Requires third party � �
Bob learns r � � �

Bob learns Alice’s location �
Communication steps 4 6 2 2

outer threshold distance rout. That is, if Bob’s distance from Alice is less than
r, Alice will certainly succeed; if his distance is greater than rout, Alice will
certainly not succeed, and between those values, Alice’s probability of success
gradually decreases. This seems to fit better with what Alice is likely to want.

In Figure 4 we plot Alice’s success probability against Bob’s distance from
her (in units of r), for each of the three protocols. As you can see, all three
protocols succeed with probability 1 when the distance is less than r. The success
probability of the Louis protocol drops immediately to 0 at that point, while the
other protocols fall to 0 more gradually. The success probability of the Lester
protocol starts dropping slowly as the distance increases past r, but then has a
rapid decrease to 0 soon after; this is due to the fact that the kangaroo method for
finding discrete logarithms has a small chance of succeeding, even if the logarithm
in question is outside the expected exponent range. The success probability of
the Pierre protocol, on the other hand, decreases to 0 gradually as the distance
increases from r to rout = 2

√
2r; this last value is the maximum distance by

which Alice and Bob can be separated and still be in diagonally touching cells.
In Table 3 we summarize the properties of our three protocols. For each,

we indicate what additional information Alice learns about Bob’s location in
the event that the protocol succeeds, and whether the protocol requires the
participation of a third party. We also indicate whether Bob learns Alice’s choice
of r, whether Bob learns any information about Alice’s location, and the number
of communication steps.

8 Conclusion

We have presented three protocols to solve the nearby-friend problem without
requiring a third party that learns location information. Compared to previous
work, our protocols require fewer rounds of computation. Moreover, we have
demonstrated their feasibility with a sample implementation and its evaluation.

Alerting people of nearby friends is only one of many possible location-based
services. A topic of further investigation is what other services can be built with
the techniques exploited in this paper.

Louis, Lester and Pierre: Three Protocols for Location Privacy 75

Acknowledgments

We thank the anonymous reviewers for their comments. This work is supported
by the Natural Sciences and Engineering Research Council of Canada.

References

1. Atallah, M.J., Du, W.: Secure Multi-party Computational Geometry. In: Dehne,
F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 165–179.
Springer, Heidelberg (2001)

2. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts.
In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

3. Brandt, F.: Efficient Cryptographic Protocol Design based on Distributed El Gamal
Encryption. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 32–47.
Springer, Heidelberg (2006)

4. Cachin, C.: Efficient Private Bidding and Auctions with an Oblivious Third Party.
In: Proceedings of 6th ACM Conference on Computer and Communications Secu-
rity, pp. 120–127. ACM Press, New York (1999)

5. Cheng, R., Zhang, Y., Bertino, E., Prabhakar, S.: Preserving User Location Privacy
in Mobile Data Management Infrastructures. In: Danezis, G., Golle, P. (eds.) PET
2006. LNCS, vol. 4258, pp. 393–412. Springer, Heidelberg (2006)

6. Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient
Multi-Authority Election Scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

7. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.1.
RFC 4346 (April 2006), http://www.ietf.org/rfc/rfc4346.txt

8. Du, W., Zhan, Z.: A Practical Approach to Solve Secure Multi-party Computation
Protocols. In: Proceedings of 2002 Workshop on New Security Paradigms Work-
shop, pp. 127–135 (September 2002)

9. Gedik, B., Liu, L.: Location Privacy in Mobile Systems: A Personalized Anonymiza-
tion Model. In: ICDCS 2005. Proceedings of 25th International Conference on Dis-
tributed Computing Systems (June 2005)

10. Gruteser, M., Grunwald, D.: Anonymous Usage of Location-Based Services
Through Spatial and Temporal Cloaking. In: MobiSys 2003. Proceedings of First
International Conference on Mobile Systems, Applications, and Services (May
2003)

11. Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

12. Køien, G.M., Oleshchuk, V.A.: Location Privacy for Cellular Systems; Analysis
and Solutions. In: Danezis, G., Martin, D. (eds.) PET 2005. LNCS, vol. 3856, pp.
40–58. Springer, Heidelberg (2006)

13. Liskov, M., Silverman, R.: A Statistical Limited-Knowledge Proof for Secure RSA
Keys. IEEE P1363 working group (1998)

14. Loopt, Inc.: loopt - Live In It. (Accessed February 2007), http://www.loopt.com/
15. MIT SENSEable City Lab: iFind (Accessed February 2007),

http://ifind.mit.edu/

http://www.ietf.org/rfc/rfc4346.txt
http://www.loopt.com/
http://ifind.mit.edu/

76 G. Zhong, I. Goldberg, and U. Hengartner

16. Mokbel, M.F., Chow, C.-Y., Aref, W.G.: The New Casper: Query Processing for
Location Services without Compromising Privacy. In: Proceedings of the 32nd
International Conference on Very Large Data Bases (VLDB 2006), September 2006,
pp. 763–774 (2006)

17. The OpenSSL Project. OpenSSL: The Open Source toolkit for SSL/TLS (Accessed
February 2007), http://www.openssl.org/

18. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

19. Pollard, J.M.: Monte Carlo Methods for Index Computation (mod p). Mathematics
of Computation 32(143), 918–924 (1978)

20. Shanks, D.: Class number, a theory of factorization, and genera. Proceedings of
Symposia in Pure Mathematics 20, 415–440 (1971)

21. Shoup, V.: NTL: A Library for doing Number Theory (Accessed February 2007)
http://www.shoup.net/ntl/

22. Yao, A.C.: Protocols for Secure Computations. In: Proceedings of 23rd IEEE Sym-
posium on Foundations of Computer Science, pp. 160–164. IEEE Computer Society
Press, Los Alamitos (1982)

http://www.openssl.org/

Efficient Oblivious Augmented Maps:

Location-Based Services with a Payment Broker

Markulf Kohlweiss1, Sebastian Faust1, Lothar Fritsch2, Bartek Gedrojc3,
and Bart Preneel1

1 K.U. Leuven ESAT/COSIC, Kasteelpark Arenberg 10
3001 Leuven, Belgium

2 Johann Wolfgang Goethe-Universität
60054 Frankfurt am Main, Germany

3 TU Delf ICT, Mekelweg 4
2628 CD Delft, The Nederlands

Abstract. Secure processing of location data in location-based services
(LBS) can be implemented with cryptographic protocols. We propose
a protocol based on oblivious transfer and homomorphic encryption. Its
properties are the avoidance of personal information on the services side,
and a fair revenue distribution scheme. We discuss this in contrast to
other LBS solutions that seek to anonymize information as well as pos-
sible towards the services. For this purpose, we introduce a proxy party.
The proxy interacts with multiple services and collects money from sub-
scribing users. Later on, the proxy distributes the collected payment to
the services based on the number of subscriptions to each service. Nei-
ther the proxy nor the services learn the exact relation between users
and the services they are subscribed to.

1 Introduction

Does my electronic map need to know where I am – or that I am looking at
it? Electronic maps can be augmented with information provided by location-
based services (LBS). This way subscribed users can find what they need fast.
With LBSs, location privacy is at stake. To reach good privacy, it is advisable to
limit access to identity information and access to location information. Even the
regular observation of service usage patterns might reveal private information.

Today LBSs are provided in one of two ways. Either all the service specific
data is made available to the user who computes the result locally—this is the
case for car navigation systems; or the service is provided remotely. The latter is
the dominant approach for providing LBSs in mobile communication networks.
Such LBSs can be seen as a by-product of the GSM system (Global System
for Mobile Communications), as the location of subscribers is already used for
mobility management [16]. Given these constraints, we aim at achieving privacy
for mobile subscribers who want to use LBSs. We presume that the location
will be gathered from a mobile network, while the service will be provided by
external service providers.

N. Borisov and P. Golle (Eds.): PET 2007, LNCS 4776, pp. 77–94, 2007.

78 M. Kohlweiss et al.

Our approach uses cryptographic protocols to ensure privacy: Oblivious trans-
fer and homomorphic encryption. By developing a framework where the user’s
location and subscription are processed in the encrypted domain, we achieve
privacy for certain classes of LBSs in a new way. Unlike classic approaches using
Mixes or anonymous credentials [18], our approach achieves the following strong
privacy properties: First, the mobile operator learns nothing in addition to what
he already knows except for the set of users that are at all interested in using
LBSs. Thus, no usage profiles can be collected. Second, the service providers
only learn the number of subscribers to their service. Thus, service providers do
not learn the users’ location.

Our protocol offers the additional privacy property of service unobservabil-
ity. Even the service providers do not know whether a user is accessing their
service or not. By introducing a privacy trustee we are able to preserve service
unobservability in case of service/operator collaboration.

The privacy provided is optimal: the operator needs to know the set of LBSs
users such that he can localize and charge them, and services are payed by the
operator depending on the number of subscribers they were able to attract.

Efficiency consideration. Despite the strong security requirements, our pro-
tocol scales well: The initialization is independent of the number of users. Sub-
scriptions are linear both in effort and in size in the number of services. This is
unavoidable, as all services need to be involved to guarantee service unobserv-
ability. The mobile user as the party with the most restricted resources has to
receive and decrypt only a single message.

Related Work. Various privacy enhancing technologies (PET) have been pro-
posed for LBSs. Most of these techniques focus on providing pseudonymity and
anonymity for LBSs. Federath et al. [12] proposed the use of a trusted fixed
station and Mixes [8] for hiding the relation of real world identities to location
data in GSM networks. While our protocol can be adapted to such a privacy
enhanced GSM network by letting the fixed station localize the user (and take
over some of the responsibilities of the mobile operator), we explicitly focus on
the less privacy friendly but more practical setting where a third party knows
the user’s location.

Researchers started to develop LBS specific PETs called mix-zones (see [4] and
[15]). Mix-zones allow users to switch pseudonyms associated to their location in
an unobservable way. Kölsch et al. [18] use pseudonymization techniques in the
following realistic setting. A network operator (or a party connected to multiple
operators) knows the user’s location, while the LBSs are provided by indepen-
dent service providers that know the user only under short lived pseudonyms.
Basically, as location information is inherently attached to a person’s life, rei-
dentification is often easy [14]. Location needs to be hidden, not anonymized.

Structure of the paper. Section 2 considers cryptographic tools. We describe
the properties and high level implementation of our privacy protecting LBS
scheme in Sec. 3. The detailed construction is given in Sec. 4. We analyze the
efficiency and security of our solution in Sec. 5 and finally conclude in Sec 6.

Efficient Oblivious Augmented Maps: LBS with a Payment Broker 79

2 Tools

Zero-Knowledge Proofs of Knowledge. A zero-knowledge proof is an in-
teractive proof in which the verifier learns nothing besides the fact that the
statement proven is true. Zero-knowledge proofs-of-knowledge protocols exist
for proving various statements about discrete logarithms in groups of known
and hidden order [3,5,7,24]. These techniques allow to prove statements about
cryptographic primitives that operate in these groups, for instance that two com-
mitments contain the same value, or that a value was verifiably encrypted. Given
a statement Alg(x) = y and Alg′(x′) = y′ about two algorithms, with secret in-
put x, x′ and public output y, y′, it is possible to prove AND and OR relations
of these statements. Such protocols can be made non-interactive by applying a
cryptographic trick called the Fiat-Shamir heuristic [13]. We write in a short
form notation, e.g., for AND

π = PK{(x, x′) : Alg(x) = y ∧ Alg′(x′) = y′}.

Homomorphic Encryption. Homomorphic encryption is a form of malleable
encryption. Given two ciphertexts, it is possible to create a third ciphertext,
with a plain text that is related to the first two. For (additive) homomorphic
encryptions, the encrypted plain texts fulfill the following relations:

Ench(m1) ⊕ Ench(m2) = Ench(m1 + m2), c ⊗ Ench(m) = Ench(c · m).

We speak of additive homomorphic encryption because + corresponds to the
addition operation of a ring. We write c ⊗ Ench(m) to denote the c times ho-
momorphic addition of Ench(m). Note that for Damg̊ard-Jurik Encryption [11]
c ⊗ Ench(m) corresponds to Ench(m)c and can be implemented efficiently.

Damg̊ard-Jurik Encryption. The Damg̊ard-Jurik cryptosystem is a generaliza-
tion and adaptation of the Pallier cryptosystem [22] based on the decisional
composite residuosity assumption. It allows for the encryption of arbitrary long
messages without the need to generate new keys. It preserves the homomorphic
property of Pallier. They also describe the zero-knowledge proofs and threshold
decryption techniques required by our protocol.

Threshold encryption. In a distributed decryption protocol a private key is
shared among a group of parties, where only a qualified subset of the parties
is allowed to decrypt a ciphertext c, whereas fewer parties learn nothing on
the secret nor on the decryption of c. In our scheme we use the special case of a
distributed 3-out-of-3 threshold encryption scheme, which could be implemented,
e.g., with the threshold protocol presented in [11].

Oblivious Transfer. Oblivious transfer (OT) was first introduced by Rabin
[23]. The primitive captures the notion of a protocol by which a sender sends
some information to the receiver, but remains oblivious as to what is sent.

80 M. Kohlweiss et al.

Adaptive OT from Blind Signatures. For LBSs, we are not so much interested
in single executions of OT, but want to query the same database multiple times
at different indices (for different users and changing locations). Adaptive OT
protocols were proposed in [10,19,20]. Camenisch et al. [6] recognized that the
schemes in [10,20] are based on a common principle to construct adaptive OT
from unique blind signature schemes (UBSS). The first UBSS is described by
Chaum in [9].

We briefly sketch the basic idea of adaptive OT schemes based on UBSS. First,
all messages m1, . . . , mn are symmetrically encrypted using the hashed signature
of the index i, 1 ≤ i ≤ n, as the key. Thus Ci = Encs(mi; H(Sign(i; sk))). H is a
symmetric hash function, Encs is a secure symmetric cipher, Sign is the signature
algorithm corresponding to the UBSS, and sk is the signing key of the sender
that will be used for creating the blind signature. The ciphertexts C1, . . . , Cn

are transferred to the receiver. To obtain message mı̂, the receiver runs a blind
signature protocol with the sender on message ı̂ to obtain the symmetric key
(signature on ı̂).
OT using Homomorphic Encryption. It is a known property of additive ho-
momorphic encryption that given an encryption Q = Ench(1) it is possible to
compute an encryption of a message m as m ⊗ Q = Ench(m · 1) = Ench(m).
However, if Q = Ench(0), the same operation does not change anything, i.e.,
m ⊗ Ench(0) = Ench(0) [21].

Given the semantic security of the encryption, the party trying to encode the
message cannot distinguish the two cases above. Based on this observation an
OT can be constructed by using a vector Q = (Q1, . . . , Q�). To request message
mĵ, Qĵ = Ench(1) and Qj = Ench(0) for j �= ĵ. Zero-knowledge proofs can be
used to prove the correct construction of Q. The communication complexity of
the protocol can be reduced by computing E =

⊕�
j=1 mj ⊗Qj , and transferring

only E to the recipient.

3 Privacy Protected LBS Scheme: Security Definition
and Solution Sketch

3.1 Definition

Parties. Our protocol involves a user U who accesses LBSs over her mobile
device. Her goal is to obtain location specific information on topics of her interest.
This information is collected and served by service providers L1, . . . , L�. A third
party that knows the user’s location and stands in a financial relationship with
the user acts as a proxy P between users and services — this could be the
mobile operator of the user or an organization associated with it. The proxy is
responsible for the security of the location information and assists in the payment
transaction. We assume that the number of users connected over a proxy is
much higher than the number of services. Finally, we assume the existence of
an independent party without any commercial interests: a privacy protection
organization T that can be offline for most of the time. We refer to all parties
except users as organizations.

Efficient Oblivious Augmented Maps: LBS with a Payment Broker 81

Security and Privacy Requirements. A secure and privacy friendly LBS
protocol should protect the assets and interests of all involved parties. The assets
that need to be protected are: the user’s location, the user’s subscription, the
topic specific databases of the Lj , and the payment. We consider the following
requirements:

– Location privacy: The protocol does not reveal the user’s location to the
service.

– Service usage privacy: Even when the proxy and the LBSs collude, the se-
crecy of the user’s subscription remains protected. This includes message
privacy; i.e., only the users can decrypt the messages of services.

– Database secrecy: The user and the proxy get no information about the topic
specific database of Lj . A user gets only the information for the locations she
requested. This property must hold even if the proxy and the proxy collude.

– Fairness: It is guaranteed that either the user receives the expected data for
the requested location and the LBS receives his expected payment, or the
cheating party can be uniquely identified. In order to preserve service usage
privacy, the user reveals the cheating party only to the trustee T .

Protocol phases. In the Setup phase the involved parties generate their keys.
During the Service Update phase, each service Lj encrypts its topic specific
database and transfers it to the proxy. In the Subscription phase a user U cre-
ates an encrypted subscription for a service, sends it to the proxy, and is charged
the subscription fee. In the Data Retrieval phase the proxy runs a protocol with
every service Lj and obtains an encrypted result. The proxy combines them into
a single encrypted result for the user such that she only receives the data of the
subscribed service. The fair allocation of the money collected in the subscription
phase takes place in the Settlement phase under the supervision of the trustee T .

Remarks. The database of a service Lj is represented as a one-dimensional
vector with one element for each location. We assume that the number of loca-
tions n is the same for all services. Further, we assume that services only update
the whole database at once. In the current version of our protocol a user is only
subscribed to a single service. Service usage privacy is guaranteed with respect
to the total number of users that subscribed during a subscription period. A
subscription period is defined as the time between two settlement phases. Fi-
nally, we assume that parties communicate over secure channels and that P , Lj ,
and T , are able to authenticate communication, and to sign messages using their
identity.

3.2 High-Level Approach and First Sketch

We follow a constructive approach in the description of our protocol. We use
building blocks from Sec. 2, put them into place, and describe their function
in our construction. Some of the security requirements can be fulfilled by the
functionality provided by individual building blocks; others require a complex

82 M. Kohlweiss et al.

interplay between building blocks. As a consequence the mapping from building
blocks to the sub-protocols of our solution is not one-to-one. We will sketch the
sub protocols (cf. Fig. 1) as they get assembled from their building blocks.

Our main building blocks are two variants of OT and a threshold encryp-
tion scheme. Homomorphic encryption and zero-knowledge protocols serve as
sub - building blocks in the previous schemes, but are also used to glue them
together in a secure way. The two OT protocols are specifically selected for their
good performance under repetition of input data. The blind signature based OT
scheme (cf. Sec. 2) is optimized for the case that the input database remains
fixed, while the index varies. The homomorphic encryption based OT is efficient
in the opposite case; it is efficient for fixed indices.

During the protocol execution, a single proxy interacts with a multitude of
users and multiple services. The first building block we put into place is a blind
signature based OT protocol. It is executed with the proxy acting as the requester
and one of the services as the sender. It allows the proxy to retrieve location
specific information mı̂,j for a user at location ı̂ without service Lj learning the
user’s location. This guarantees location privacy. The proxy executes this sub-
protocol with all offered services. This assures service privacy at the service side.
In this way the proxy obtains an information vector mı̂,1, . . . , mı̂,�.

Our second building block is a homomorphic encryption based OT protocol
(cf. Sec. 2). It is run with the proxy acting as the sender (using the aforemen-
tioned vector as input) and the user acting as the requester (using the index of
the service Lĵ she subscribed to as input). The protocol allows the user to learn
mı̂,ĵ without the proxy learning the user’s subscription; we achieve full service
privacy.

Note how the choice of OT protocols is crucial for the performance of our
protocol. In the first OT, the same database is queried by the proxy for all
users (and different locations as they move about). The database needs to be
encrypted and transferred to the proxy only once (cf. Fig. 1.2). For the second
OT between user and proxy, the subscribed service is invariant for the duration
of a subscription period and it is sufficient to send the first (and expensive)
message of the homomorphic OT only once (cf. Fig 1.3 ©1). Consequently we
split off these operations as sub-protocols which have the semantic of a service
update and a user’s subscription.

This gives us a first instantiation of the first 4 protocol phases. The outline
of the protocol is depicted in Fig. 1. Note that some of the sub protocols are
not yet implemented. For ease of presentation we use a simplified notation. The
detailed protocol description is given in Section 4.

Setup. (cf. Fig. 1.1: ©1 KeygenU, ©2 KeygenL) Every user generates a key-pair
for a homomorphic encryption scheme ©1 . These keys are used for the OT based
on homomorphic encryption. Every service generates a key-pair (skB, pkB) that
is used for OT based on blind signatures ©2 .

Service Update. (cf. Fig. 1.2: ©2 EncryptData) The database of the LBS Lj

consists of the n elements m(1,j), . . . , m(n,j) ©1 . Each of the elements is encrypted
with its own symmetric key H(ki) that is computed by hashing the signature

Efficient Oblivious Augmented Maps: LBS with a Payment Broker 83

ki = Sign(i; skB) of the index ©2 . The encrypted database DBj = (C1, . . . , Cn),
with Ci = Encs(mi, H(ki)) is sent to the proxy ©3 .

Subscription. (cf. Fig. 1.3: ©1 Subscribe) A user’s subscription ©1 consists of
� elements S(U,1), . . . , S(U,ĵ), . . . , S(U,�), one for each service ©2 . Each element
contains a ciphertext Q of the homomorphic encryption scheme. Q decrypts to 1
for the service Lĵ the user subscribes to and to 0 otherwise. To ensure the
security of the OT the user proves in zero-knowledge that all S(U,j) are correctly
constructed.

Data Retrieval. (cf. Fig. 1.4: ©1 Request, ©2 Combine, ©4 Decrypt) In the data
retrieval phase a user obtains location-specific data from her subscribed service.
The proxy is involved since he is aware of the user’s location and stores the
encrypted databases of the services. Recall that these databases are encrypted
using hashed signatures as keys. The proxy acts on the user’s behalf and can
request decryption of individual items without revealing the location of the user.
To guarantee service usage privacy the proxy has to repeat the following steps
for every service Lj ©1 :

The proxy blinds the location ı̂ and sends the blinded value Blind(̂ı; b, pkB) to
the service. The service replies with the blinded signature 〈kı̂〉blind. The proxy
computes mı̂,j = Decs(Cı̂; H(Unblind(〈kı̂〉blind; b, pkB))). This completes the first
OT. The proxy collects mı̂,1, . . . , mı̂,� and continues with the second OT (the
user’s first message is taken from her subscription). The proxy takes the Q
corresponding to S(U,j) and computes Ej = mı̂,j ⊗ Q for all 1 ≤ j ≤ �.This
corresponds to an encryption of mı̂,ĵ for Lĵ and an encryption of 0 otherwise.

As a last step the proxy combines the Ej by homomorphically adding all the
encryptions (not knowing which of them contain the message) ©2 . This way all
encryptions of 0 cancel out. The result is transferred to the user ©3 . She decrypts
E to obtain mı̂,ĵ ©4 .

The two main flaws of this construction are (1) the fact that the proxy learns
the mi,j vector for the locations of all users. This is a compromise of database
secrecy and (2) the lack of a fair payment infrastructure.

3.3 First Revision: Database Secrecy

We address the lack of database secrecy by intertwining the first OT with the
second. To this end we let the proxy pass on S(U,j) to Lj . Now (after agreeing
on who sends which bit range) both Lj and the proxy can act as senders in
the second OT without learning each others inputs. This is made possible by
the properties of homomorphic encryption, which lets everyone manipulate en-
crypted data. Informally, the last message of the first OT will be transferred as
part of the encrypted payload of the second OT. This guarantees that only the
user with her secret decryption key can obtain the results of both protocols.

More concretely the following changes have to be made in the subscription
and data retrieval phases.

Subscribe. The S(U,j) are now also sent to the services ©2 .

84 M. Kohlweiss et al.

Fig. 1. Setup and Service Update, Subscription, Data Transfer, and the Settlement
phase: Subscription S(U,j), encrypted database DBj , service result Ej , combined result
E, location-specific message m(ı̂,ĵ), number of subscriptions Nj , location ı̂, and the
subscribed service ĵ

Data Retrieval. During Request ©1 the proxy blinds the location ı̂ and sends
the blinded value Blind(̂ı; b, pkB) to the service. To ensure that only the user
(and not the proxy) can decrypt Cı̂, the service encrypts the blinded signature
〈kı̂〉blind. This is done with an additive homomorphic encryption scheme. Re-
member that during subscription the user (through the proxy) provided the ser-
vice Lĵ with an encryption Q = Ench(1). The service computes Eĵ = 〈kı̂〉blind ⊗
Q = Ench(〈kı̂〉blind ·1) = Ench(〈kı̂〉blind). The result is sent to the proxy who uses
a similar approach to add b and Cı̂ to Eĵ. These requests are done for all ser-
vices, including those the user did not subscribe to. The latter however received
Q = Ench(0) during Subscribe and all the operations result in Ej = Ench(0), for
j �= ĵ.

As a last step the proxy computes the homomorphic sum of all encryptions—
not knowing which of them contain the unblinding information, the encrypted

Efficient Oblivious Augmented Maps: LBS with a Payment Broker 85

message, and the blinded signature ©2 . This way all encryptions of 0 cancel out.
The result is transferred to the user ©3 . She decrypts E, obtains b‖Cı̂‖〈kı̂〉blind,
and computes mı̂ĵ = Decs(Cı̂; H(Unblind(〈kı̂〉blind; b, pkB))) ©4 .

3.4 Second Revision: Payment Infrastructure

The core idea for the payment infrastructure is to bind the request of the sec-
ond OT (the subscription) to a vote. Now revenues can be fairly distributed
between services by anonymously counting the number of times users voted for
(subscribed to) a service. We use ballot counting techniques based on homo-
morphic encryption and threshold decryption. We make the following changes
to the setup and subscription phase, and we provide an implementation for the
settlement phase.

Setup. (cf. Fig. 1.1: ©3 PaymentSetup) Each LBS Lj runs a distributed key
generation protocol together with the proxy and the privacy trustee ©3 . This
results in a key pair with a secret key shared according to a (3, 3)-threshold
scheme. The shared key is needed in the settlement phase to jointly compute the
payment result.

Subscription. (cf. Fig. 1.3: ©1 Subscribe, ©3 VerifySubscription) A user’s sub-
scription ©1 consists of � elements S(U,1), . . . , S(U,ĵ), . . . , S(U,�), one for each ser-
vice ©2 . Each element contains two ciphertexts Q and P of the homomorphic
encryption scheme, where the first is encrypted with the user’s public key and
the latter with the payment key. Both Q and P decrypt to 1 for the service Lĵ the
user subscribes to, and to 0 otherwise. To ensure the security of the OT and the
payment, U proves in zero-knowledge that Q and P are constructed correctly.
The service providers check these proofs before providing the service ©3 .

Settlement. (cf. Fig. 1.5: ©1 Settlement) The technique used in the Settlement
phase is similar to a technique used in electronic voting protocols. The non-
interactive zero-knowledge proof sent by the user in the subscription ensures
that P and Q encrypt the same value (either 1 or 0). The homomorphic property
of the ciphertexts allows to anonymously sum up the content of all different
P values. The trustee T ensures that only the homomorphic sums (and not
individual subscriptions) are decrypted in a 3-out-of-3 threshold decryption ©1 .
Based on the result the proxy divides the subscription money received from the
users during subscription in a fair way ©2 .

4 Our Multi-party Proxy LBS Scheme

Notation. We write cryptographic primitives as Alg(x; k), where x denotes
the processed inputs of the algorithm and k denotes keys, randomness, or pub-
lic parameters. When it is clear from the context k is omitted. We use the
Alg(E1(x1; k1), E2(x2; k2)) to denote an interactive algorithm between entities E1
and E2 with the respective inputs and keys.

86 M. Kohlweiss et al.

Length Parameters. Let κ be a security parameter that determines the key
sizes of the underlying cryptographic schemes. We use lN ∈ Θ(κ) to denote
the length of the RSA modulus N used for Damg̊ard-Jurik encryption. The
length of a ciphertext for a plaintext of length Ns is Ns+1. For simplicity we use
ciphertexts of length lN(s + 1), to encode plaintexts of length (lN − 1)s. We use
lH to denote the length of the plaintext for the homomorphic encryption scheme.
Let lB, lb, and lD be the length of a blinded signature, the blinding factor, and
an encrypted database entry respectively. We require lB + lb + lD ≤ lH .

Setup. PaymentSetup(Lj(1κ), P(1κ), T (1κ)) is executed for each service Lj . The
privacy trustee T , the proxy P and the LBS Lj run a distributed key generation
protocol to generate a public payment key pkSj . The secret key skSj is shared
according to a (3, 3)-threshold encryption scheme such that only the three parties
together can reconstruct the key. This results in three secret shares skS(Lj ,j),
skS(P,j), and skS(T ,j), which are included in the secret key of P , Lj , and T
respectively.

LBS Key Generation. Every service Lj runs KeygenL(1κ) to generate the keypair
(pkLj

, skLj) that contains amongst others a key pair (pkBj , skBj) for a unique
blind signature protocol.

Proxy Key Generation. For our construction the proxy does not need to generate
keys on his own. The public key pkP of P results from adding the public payment
keys of the services. Hence pkP contains pkS1, . . . , pkS�. His secret key skP
contains the corresponding secret shares skS(P,1), . . . , skS(P,�).

User Key Generation. KeygenU(1κ) generates a key pair (pkU , skU) for an ad-
ditive homomorphic Damg̊ard-Jurik cryptosystem [11] used for homomorphic
OT [21].

Service update. Each LBS Lj encrypts its location specific information using
algorithm EncryptData(m(1,j,v), . . . , m(n,j,v), v; skLj). The value v denotes the
version number of the data update. Note that m(i,j,v) contains i,j, and v and is
signed by Lj to allow for checks of authenticity. A service Lj uses his secret key
skBj to compute DB(j,v) = (C(1,j,v), . . . , C(n,j,v), v):

k(i,j,v) = Sign(i‖v; skBj)
C(i,j,v) = Encs(m(i,j,v); H(k(i,j,v))).

The cryptographic hash function H is used for computing the symmetric key.
Note that in Sign the values i and v need to be interpreted as fixed length bit
strings. The resulting database DB(j,v) is sent to the proxy.

Subscription. User U must subscribe to a service Lĵ to receive location related
information fromhim.This is done by running the protocolSubscribe(P(skP , pkU),
U(ĵ; skU , pkP)) together with the proxy. The proxy’s public key is parsed as pkP =
(pkS1, . . . , pkS�) and the user proceeds as follows:

Efficient Oblivious Augmented Maps: LBS with a Payment Broker 87

1. U uses her public key pkU to compute subscription elements S(U ,j), 1 ≤ j ≤ �:

S(U ,j) = (Q(U ,j), P(U ,j), πj) where

Q(U ,j) =

{
Ench(1; pkU) if j = ĵ

Ench(0; pkU) otherwise
, P(U ,j) =

{
Ench(1; pkSj) if j = ĵ

Ench(0; pkSj) otherwise

πj = SPK{(r1, r2) :
(Q(U ,j) = Ench(1; r1, pkU) ∧ P(U ,j) = Ench(1; r2, pkSj))∨
(Q(U ,j) = Ench(0; r1, pkU) ∧ P(U ,j) = Ench(0; r2, pkSj)}

The Q(U ,j) are used to request the location specific information from the
LBS Lĵ and the P(U ,j) are used for the oblivious payment.

2. The resulting S(U ,1), . . . , S(U ,�) are sent to the proxy together with the pay-
ment for the subscription, e.g., by using a credit card.

3. Additionally, the user proves in zero-knowledge that the homomorphic sum
of the values Q(U ,j) is an encryption of 1. This can be done using standard
techniques from [11]. See also Sec. 2.

4. If the verification of the the last proof and of the individual πj proofs suc-
ceeds, the proxy adds a time stamp to each S(U ,j) and signs it.

The proxy passes each subscription S(U ,j) on to the respective service Lj . He
keeps a counter of the number of user subscriptions in this subscription period.
Optionally the proxy may also retain all S(U ,j).

Verify Subscription. Service Lj runs VerifySubscription(S(U ,j), j; pkU , pkP) to
verify that S(U ,j) is correct, i.e., that the content of the queries Q(U ,j) and P(U ,j)
are equal and encryptions of 0 or 1, and that the proxy cannot deny that the
user has subscribed. The first is done by verifying the proofs of knowledge, the
latter by verifying the proxy’s time stamp and signature.

If the algorithm succeeds, S(U ,j) is added to a list of subscriptions Sj . The
P(U ,j) of Sj will later on be added up using the homomorphic property of the
underlying encryption scheme Ench. If one of the verifications done by the ser-
vices Lj , 1 ≤ j ≤ � fails, they refuse to provide the information and the proxy
has to refund the payment for the subscription to the user.

Data retrieval. The proxy runs Request(P(DB(j,v̂), ı̂; skP , pkLj
), Lj(S(U ,j);

skLj , pkU , pkP)) with Lj to request location specific information for user U .
The input of the algorithm is the database DB(j,v̂) with most up-to-date

version v̂ and the current location of the user ı̂. The proxy’s output is either an
encryption of m(ı̂,j,v̂) based on the location of the user or an encryption of 0 if
U is not subscribed to Lj .

1. The proxy chooses a random b and computes

〈̂ı‖v̂〉blind = Blind(̂ı‖v̂; pkBj, b).

The random blinding factor b hides the location ı̂ of the user in 〈̂ı‖v̂〉blind.

88 M. Kohlweiss et al.

2. The proxy sends 〈̂ı‖v̂〉blind to Lj , 1 ≤ j ≤ �, which computes

Ej = 〈k(ı̂,j,v̂)〉blind ⊗ Q(U ,j), where 〈kı̂,j,v̂〉blind = Sign(〈̂ı‖v̂〉blind; skBj)

3. Every service Lj sends Ej back to the proxy.
4. The proxy enriches Ej with C(ı̂,j,v̂) and b. This is done by computing Ej :=

Ej ⊕
(
(C(ı̂,j,v̂)‖b)
 lB

)
⊗Q(U ,j). Where
 denotes shifting to the left. This

only changes the content of Ej if Q(U ,j) is an encryption of 1.

Combining. After running Request with every Lj and receiving the correspond-
ing Ej , the proxy runs Combine(E1, . . . , El, skP , pkU) to compute E =

⊕�
j=1 Ej .

Decrypting. The user decrypts E using Decrypt(E; skU , pkLĵ
):

C(ı̂,ĵ,v̂)‖b‖〈k(ı̂,ĵ,v̂)〉blind =Dech(E; skU)
k(ı̂,ĵ,v̂) =Unblind(〈k(ı̂,ĵ,v̂)〉blind; b, pkBĵ)

m(ı̂,ĵ,v̂) =Decs(C(ı̂,ĵ,v̂); H(k(ı̂,ĵ,v̂)))

Settlement. The proxy P can share the money collected during subscription
fairly by counting the number of users that subscribed to service Lj in a given
subscription period. However, this has to be done without revealing the user’s
service usage. First, Lj transfers Sj to the proxy and the privacy trustee. P
and T check the signature and the time stamp of each S(U ,j) to make sure that
Lj does not add self generated subscriptions. Moreover, the proxy checks if |Sj |
corresponds to his subscription counter. This is needed to guarantee that services
do not try to shrink the anonymity set of users. As the trustee is not online
all the time he can only check the plausibility of the value. However, privacy
savvy users can submit their encrypted subscriptions (or its hash) to the privacy
trustee, which checks if their descriptions are considered during settlement.

The computation of Lj ’s fraction of the money is jointly done by the proxy,
the privacy trustee and the service Lj . First, they compute

⊕
U P(U ,j). The result

is an encryption of the number of users having subscribed to service Lj . Since⊕
U P(U ,j) is encrypted with pkSj , all three parties have to participate in a dis-

tributed (3, 3)-threshold decryption. The output of Settlement(Lj(Sj ; skLj , pkP),
P(skP , pkLj

), T (skSj ,T)) is the total number of users subscribed to service Lj .
As long as not all parties collude, the service usage privacy of the users is guar-
anteed. See Section 5.2 for details.

5 Security and Efficiency

5.1 Efficiency Analysis

For our efficiency analysis we focus on two main factors. The first is the limitation
in computation and communication resources on small mobile devices. The other
factor is scalability for the organizations with respect to location resolution,
i.e. number n of map cells, number of services �, and number of users. The

Efficient Oblivious Augmented Maps: LBS with a Payment Broker 89

costs for the setup of the payment and the service and proxy key generation
are independent of the number of users and map cells. They are executed by
unrestricted parties, and are thus ignored in the analysis. A similar argument
holds for the settlement. We consider only public-key operations and use the
length parameters from Section 4.

User. The costs incurred by the user are key generation, subscription, and
decryption. Computation: Key generation involves the generation of a single
RSA key. The decryption requires a single Damg̊ard-Jurik decryption. The most
relevant cost for the user is the generation of the subscriptions with 12 expo-
nentiations. However, this cost is incurred only once per subscription period. In
principle, the computed values can even be reused for multiple periods. Com-
munication: A Damg̊ard-Jurik ciphertext size is about lH + lN , where lN is the
size of the RSA modulus. The overhead in addition to the message length lD
is lB + lb + lN . If we use RSA blind signatures, this is three times the size of
an RSA modulus. The size of a subscription is about 12�(lH + lN). For small
devices and slow communication channels, we suggest to do the key generation
and subscription over the user’s PC, and synchronize skU to the user’s mobile
device, or create the keys on the device, and move only pkU to the PC for added
security.

Organizations. The scalability of our service is nearly optimal. Key setup and
database encryption are independent of the number of users. Database encryp-
tion is linear in the number of locations. Subscriptions are linear in the number
of services—optimal as all services need to be involved to guarantee service pri-
vacy. Practically data transfer is independent of the number of locations and
again only depends on the number of services.1

Computation: The most prominent cost incurred by the service is database
encryption requiring one signature operation per location. Communication: The
most dominant cost for Lj and P is the transmission of the encrypted database
DB(j,v) which has length n · lD. Moreover, this costs incur whenever any of the
mi should be updated. This is a consequence of our strong database security
definition. For a wide range of services it appears reasonable to relax this re-
quirements. Updated encryptions Ci are computed like in EncryptData but only
for a subset U ⊂ {1, . . . , n} of updated locations.

5.2 Security Analysis

Our main goal is to implement LBSs without revealing additional information
about the user’s location and her service usage profiles. An adversary involved
in our protocol should learn nothing except what he already could have learned
by being involved in a scenario without LBSs. For the proxy this implies that
he is allowed to know the user’s location but should not learn anything about
the user’s service usage profiles. For service providers this implies that both the
1 De facto the dependence is logarithmic as locations are included in the message; 4

billion different locations can be encoded using 32 bits.

90 M. Kohlweiss et al.

user’s location and the user’s service usage profiles have to be concealed. Note
that in a scenario that includes payment mechanisms we have to diminish slightly
from this strong security notion of no additional knowledge since a service can
infer the number of subscribed users from the received amount of money.

As a further trust assumption we state that the proxy helps to solve fairness
conflicts between users and service providers. This trust assumption is supported
by the rationality of the proxy: his core competence is setting up the mobile in-
frastructure such that services and users can communicate in a fair way. Cheating
or not cooperating in resolving fairness disputes decreases his reputation, thus de-
creasing his profit. Only in cases where accusing the cheater would endanger the
users service privacy, we make use of the privacy trustee as an additional off-line
trusted party. The assumption of a trusted third party to resolve fairness prob-
lems is common in the literature of fair exchange protocols. [1,2] have shown that
the problem of fairly exchanging data requires at least an off-line trusted party.

Location privacy. For the location privacy note first that in our protocol
services only get in contact with location related information in the data retrieval
phase. However, there the OT based on blind signatures protects location related
information from being revealed unintentionally. The security of the OT scheme
is based on the signature’s blindness property. This property guarantees that
for any malicious service L̃j the view of L̃j for a messages M0 = i‖v and for a
message M1 = i′‖v′ is computationally indistinguishable. As the user’s location
ı̂ is hidden in 〈̂ı‖v̂〉blind, the location privacy can be reduced to the blindness
property of the used blind signature scheme.

Service usage privacy is more challenging. Unfortunately, achieving service
usage privacy First, the relationship user/service plays a role in different protocol
stages; i.e. it is present during data retrieval and in the payment processes.
Second, we consider a stronger, but realistic, adversary model and allow for a
corrupted proxy, who possibly collaborates with any service. This implies that
the service usage privacy cannot rely on the help of the proxy. We proceed by
analyzing the relevant phases.

In the subscription phase, the user’s subscription together with the proof of
knowledge could reveal the user’s service usage. In case of the first the crucial
information is protected by the semantic security of the underlying homomor-
phic encryption scheme. The semantic security guarantees that two different
subscriptions are indistinguishable. The zero-knowledge property of πj ensures
that no further information is revealed.

During the settlement, privacy is protected by using a joint decryption tech-
nique, i.e. a ciphertext can only be decrypted if the three parties, the P , Lj , and
T work together. Hence, even if P and Lj are corrupted, there is no way for
the adversary to force the decryption of a single subscription that would reveal
the user/service relationship. This is only true as long as it is not possible to
present faked subscriptions to the privacy trustee, which later on get accepted.
This would reduce the size of the anonymity set |Sj |. The faked subscription
attack reduces to n − 1-attack [8], against which a full protection is impossible.

Efficient Oblivious Augmented Maps: LBS with a Payment Broker 91

However, to make it more difficult for an adversary, it could be mandatory for
users to always submit a subscription (or hash of it) to the trustee. This tech-
nique leads to a lower bound for the size of the anonymity set |Sj |. To some
extent the sensitivity to these attacks can be reduced by using authenticated
channels such that subscriptions can be assigned to real users2.

Although one cannot assume the honesty of the proxy in general, it often seems
more realistic to limit the adversaries’ power to corrupt only services. This is
further supported by our assumption of the proxy’s rationality. In the case of the
proxy’s honesty, we have a stronger protection against the faking attack: first,
because the proxy and the trustee verify the correctness of the signature and
the time stamp and second, because the proxy checks for the equality of |Sj |
and his subscription counter. Both techniques help to protect against attempts
in shrinking the anonymity set.

Database secrecy. In contrast to location and service usage privacy the
database secrecy protects the interest of the LBS. It guarantees that a user gets
no more than the requested information even if she collaborates with the proxy.
The database secrecy of our scheme, relies on two aspects: First, the service
encrypts his database before he sends it to the proxy. Second, as a result of the
data retrieval phase the user only gets to know the requested data. This is due
to the so called ‘Database security’ [20] of the underlying secure OT protocol.

Fairness. Our system is said to be fair if both the interests of the user and of
the service are equally protected. With respect to our protocol this means that
neither the user gets access to content without paying nor the service is able to
cheat and receive a non-authorized payment without providing the information.

The fairness of our protocol significantly relies on the rationality and the
consequential semi-honesty of the proxy. Furthermore we require a trade off
between service privacy and fairness to protect against active attacks by services.

User fairness. From the user’s perspective fairness is accomplished when the
user receives the appropriate location information for her payment.

The proxy sends a request to each service. The service responds with a signed
value Ej that is either an encryption of 0 (if the user did not subscribe to Lj)
or an encryption of the requested data. Should a service fail to provide any
value Ej , the proxy forces it to pay a fee corresponding to the price of a service
subscription and passes that money on to the affected user.

Now the proxy computes the user’s final value E by combining all responses.
The user decrypts E and checks whether it corresponds with her requested data.
To facilitate this, the messages m(ı̂,ĵ,v̂) contain ı̂,ĵ, and v̂ and is signed by Lj . If
a message is incorrect, the user can file a complaint.3

2 A powerful adversary will always find ways to forge subscriptions, even if it is just
by convincing real users with money.

3 Note that a complaining user acts as a decryption oracle. Together with the ho-
momorphic property this can lead to the decryption of arbitrary messages. Conse-
quently, user should not complain about random looking messages to an untrusted
party.

92 M. Kohlweiss et al.

In this case the user has three choices: she can either choose full privacy and
give up her money; she can file the complaint with the privacy trustee; or she
can complain directly with the proxy. Complaints contain a proof of correct
decryption of a signed E. The recipient of the complaint verifies the proof and
pays the money back. T will ask the proxy for the money given to users during
conflict resolution in return for a list of bad services. These services will receive
reduced payment or be sanctioned otherwise. Should the proxy refuse to pay the
money to the trustee this can only be resolved legally.

Our protocol does not protect against denial of service attacks in which ma-
licious services send random ciphertexts instead of 〈k(ı̂,j,v̂)〉blind ⊗ Qj. However,
this can be detected if users are willing to give up their privacy towards the
proxy. We again rely on an optimistic strategy and the punishment of attack-
ers upon detection. It is an open problem to propose an efficient data retrieval
protocol based on zero-knowledge protocols that solves this problem.

Service fairness means that service providers receive fair payment. In particular,
a service provider must receive money for every user he serves.

This is ensured by the checks done in VerifySubscription. The algorithm checks
that Q(U ,j) and P(U ,j) encode the same value v ∈ {0, 1}. We refer to P(U ,j) as the
vote. Obviously if v = 0, no service is provided. Consider the case of v = 1: if (1)
all votes are considered and (2) the votes are counted correctly, P(U ,j) increases
the subscription counter of Lj by 1. The first is ensured by the time stamp
and signature of the proxy. The second property relies on the security of the
homomorphic encryption scheme and the security of the distributed decryption
against active adversaries.

6 Conclusion

We introduced the first privacy-preserving LBS framework based on crypto-
graphic techniques, namely, on oblivious transfer and homomorphic encryption.
The privacy of the user is protected by hiding the user’s location from the ser-
vices and by not revealing information on the user/service relationship. Addi-
tionally, we presented a system for subscription management including a fair yet
anonymous payment scheme.

We have given strong intuitions on the different security properties of our
scheme, however, it remains an open challenge to prove them in a formal
context.

References

1. Asokan, N., Schunter, M., Waidner, M.: Optimistic protocols for fair exchange. In:
CCS 1997. Proceedings of the 4th ACM conference on Computer and communica-
tions security, pp. 7–17. ACM Press, New York, NY, USA (1997)

2. Asokan, N., Shoup, V., Waidner, M.: Asynchronous protocols for optimistic fair
exchange. sp 00, 0086 (1998)

Efficient Oblivious Augmented Maps: LBS with a Payment Broker 93

3. Bangerter, E., Camenisch, J., Maurer, U.M.: Efficient proofs of knowledge of dis-
crete logarithms and representations in groups with hidden order. In: Hutter and
Ullmann [17], pp. 154–171

4. Beresford, A.R., Stajano, F.: Location Privacy in Pervasive Computing. IEEE Per-
vasive Computing 2(1), 46–55 (2003)

5. Brands, S.: Rapid demonstration of linear relations connected by boolean oper-
ators. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 318–333.
Springer, Heidelberg (1997)

6. Camenisch, J., Neven, G., Shelat, A.: Adaptive oblivious transfer from blind sig-
natures (unpublished manuscript through personal communication) (2006)

7. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete
logarithms. Technical Report TR 260, Institute for Theoretical Computer Science,
ETH Zürich (March 1997)

8. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 24(2), 84–90 (1981)

9. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO, pp. 199–203
(1982)

10. Chu, C.-K., Tzeng, W.-G.: Efficient k-out-of-n oblivious transfer schemes with
adaptive and non-adaptive queries. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 172–183. Springer, Heidelberg (2005)

11. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

12. Federrath, H., Jerichow, A., Kesdogan, D., Pfitzmann, A.: Security in Public Mobile
Communication Networks. In: IFIP TC 6 International Workshop on Personal
Wireless Communications, pp. 105–116 (1995)

13. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

14. Fritsch, L.: Profiling and location based services. In: Hildebrandt, M., Gutwirth, S.
(eds.) FIDIS D7.5: Profiling the European Citizen, Cross- disciplinary perspectives
(2007)

15. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through
spatial and temporal cloaking. In: MobiSys’03. Proceedings of First Interna-
tional Conference on Mobile Systems, Applications, and Services, pp. 31–42
(2003)

16. GSM Association: Location Based Services. Permanent reference document. Tech-
nical report, SE.23 (2003)

17. Hutter, D., Ullmann, M. (eds.): SPC 2005. LNCS, vol. 3450. Springer, Heidelberg
(2005)

18. Kölsch, T., Fritsch, L., Kohlweiss, M., Kesdogan, D.: Privacy for profitable location
based services. In: Hutter and Ullmann [17], pp. 164–178

19. Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener,
M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg
(1999)

20. Ogata, W., Kurosawa, K.: Oblivious keyword search. Journal of Complexity
20(2-3), 356–371 (2004)

94 M. Kohlweiss et al.

21. Ostrovsky, R., Skeith I I I, W.: Private searching on streaming data. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 223–240. Springer, Heidelberg (2005)

22. Paillier, P.: Public-key cryptosystem based on composite degree residuosity classes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–228. Springer,
Heidelberg (1999)

23. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report TR-
81, Harvard Aiken Computation Laboratory (1981)

24. Schnorr, C.P.: Efficient signature generation for smart cards. Journal of Cryptol-
ogy 4(3), 239–252 (1991)

Pairing-Based Onion Routing

Aniket Kate, Greg Zaverucha, and Ian Goldberg

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, ON, Canada N2L 3G1
{akate,gzaveruc,iang}@cs.uwaterloo.ca

Abstract. This paper presents a novel use of pairing-based cryptogra-
phy to improve circuit construction in onion routing anonymity networks.
Instead of iteratively and interactively constructing circuits with a tele-
scoping method, our approach builds a circuit with a single pass. The
cornerstone of the improved protocol is a new pairing-based privacy-
preserving non-interactive key exchange. Compared to previous single-
pass designs, our algorithm provides practical forward secrecy and leads
to a reduction in the required amount of authenticated directory
information. In addition, it requires significantly less computation and
communication than the telescoping mechanism used by Tor. These prop-
erties suggest that pairing-based onion routing is a practical way to allow
anonymity networks to scale gracefully.

1 Introduction

The concept of onion routing [27] plays a key role in many efforts to provide
anonymous communication. In the world of cryptographic protocols, bilinear
pairings [9] have also had comparable impact. Their meeting is not surprising.
This paper applies pairing-based cryptographic techniques—namely non-
interactive key agreement—to the problem of session key establishment in ano-
nymity networks based on onion routing. We show that this approach offers
better performance, evidenced by reduced computational cost and fewer net-
work communications. This improved performance is of particular interest to
low-latency anonymity networks, as it increases responsiveness and network ca-
pacity. While using fewer resources for cryptography, we are careful to simulta-
neously meet the security goals provided by existing methods.

1.1 Our Contributions

This paper makes four primary contributions in the field of anonymous
communication.

1. We define a privacy-preserving key agreement protocol using bilinear pairings
in an identity-based infrastructure. We then adapt it to achieve unilateral
(one-way) anonymity with non-interactive key agreement.

N. Borisov and P. Golle (Eds.): PET 2007, LNCS 4776, pp. 95–112, 2007.

96 A. Kate, G. Zaverucha, and I. Goldberg

2. We use our protocol to build onion routing circuits for anonymity networks
like Tor [7]. Our protocol constructs a circuit in a single pass and also pro-
vides a practical way to achieve forward secrecy.

3. The performance of our circuit construction protocol surpasses that of Tor,
requiring significantly less computation and fewer network communications.

4. Our protocol does not require the public keys of onion routers to be au-
thenticated. This reduces the load on directory servers and improves the
scalability of anonymity networks.

The anonymous authentication scheme we present extends the non-interactive
key agreement scheme of Sakai, Ohgishi, and Kasahara [29]. Previous work re-
lated to pairing-based key exchange, as well as to anonymity networks, is covered
in Section 2. We describe the cryptographic protocols in Section 3, and an onion
routing system built with a Boneh-Franklin identity-based infrastructure in
Section 4. Some of the more practical issues in such a system are discussed
in Section 5. Finally, we compare our computational and communications costs
to those of Tor in Section 6, and Section 7 concludes.

2 Related Work

Over the years, a large number of anonymity networks have been proposed and
some have been implemented. Common to many of them is onion routing, a
technique whereby a message is wrapped in multiple layers of encryption, form-
ing an onion. As the message is delivered via a number of intermediate onion
routers (ORs), or nodes, each node decrypts one of the layers, and forwards the
message to the next node. This idea goes back to Chaum [3] and has been used
to build both low- and high-latency communication networks. Formalizations
and security discussions of onion routing can be found in [2,19,22,32].

A common realization of an onion routing system is to arrange a collec-
tion of nodes that will relay traffic for users of the system. Some examples
are [5,7,10,27,28] (the related work section of [7] contains a thorough list). To
date, the largest onion routing system is Tor, which has approximately 1000
onion routers and hundreds of thousands of users [33]. These numbers (and
their growth) underscore the demand for anonymity online.

To use a network of onion routers, users randomly choose a path through the
network and construct a circuit—a sequence of nodes which will route traffic.
After the circuit is constructed, each of the nodes in the circuit shares a symmet-
ric key with the user, which will be used to encrypt the layers of future onions.
In the original Onion Routing project [14,27,32] (which was superseded by Tor)
circuit construction was done as follows. The user created an onion where each
layer contained the symmetric key for one node and the location of the next
node, all encrypted with the original node’s public key. Each node decrypts a
layer, keeps the symmetric key and forwards the rest of the onion along to the
next node. The main drawback of this approach is that it does not provide for-
ward secrecy (as defined in [7]). Suppose a circuit is constructed from the user
to the sequence of nodes A ⇔ B ⇔ C, and that A is malicious. If A records the

Pairing-Based Onion Routing 97

traffic, and at a later time compromises B (at which point he learns the next
hop is C), then compromises C, the complete route is known, and A learns who
the user has communicated with.

A possible fix for this problem is to frequently change the public keys of each
node. This limits the amount of time A has to compromise B and C, but requires
that the users of the system frequently contact the directory server to retrieve au-
thentic keys. Later systems constructed circuits incrementally and interactively
(this process is sometimes called telescoping). The idea is to use the node’s public
key only to initiate a communication during which a temporary session key is
established via the Diffie-Hellman key exchange. Tor constructs circuits in this
way, using the Tor authentication protocol (TAP). TAP is described and proven
secure in previous work of the last author [13].

Trade-offs exist between the two methods of constructing circuits. Forward
secrecy is the main advantage of telescoping, but telescoping also handles nodes
that are not accepting connections; if the third node is down during the con-
struction of a circuit, for example, the first two remain, and the user only needs
to choose an alternate third. Information about the status and availability of
nodes is therefore less important. The drawback of telescoping is the cost; estab-
lishing a circuit of length � requires O(�2) network communications, and O(�2)
symmetric encryptions/decryptions.

Øverlier and Syverson [24] improve the efficiency of telescoping-based circuit
construction using a half-certified Diffie-Hellman key exchange [21, Sec. 12.6].
They further define an efficient single-pass circuit construction and a few vari-
ants. The proposed variants offer different levels of forward secrecy, which is
traded off against computation and communication. For example, their eventual
forward secret variants use frequent rotation of nodes’ public keys, presenting the
same issues as the first generation onion routing; their immediate forward secrecy
variant uses the same amount of communication as the current Tor (O(�2)), but
less computation.

Privacy-preserving authentication schemes can be one- or two-way (also re-
ferred to as unilateral or bilateral). After one-way authentication between Anony-
mous and Bob, Anonymous has confirmed Bob’s identity and Bob learns nothing
about Anonymous, except perhaps that he or she is a valid user of a particular
system. In a two-way scheme, both users can confirm they are both valid users
without learning who the other is.

The work of Okamoto and Okamoto [23] presents schemes for anonymous au-
thentication and key agreement. In Rahman et. al. [26], an anonymous authenti-
cation protocol is presented as part of an anonymous communication system for
mobile ad-hoc networks. The protocols in both papers are complex, and limited
motivation is given for design choices. Further, both papers neglect to discuss
the security of their proposed protocols. The protocols we present in Section 3.2
are a great deal simpler than previous protocols. This allows them to be more
easily understood, and simplifies the discussion of their security, which appears
in Section 3.3.

98 A. Kate, G. Zaverucha, and I. Goldberg

Previous protocols (as well as ours) owe a lot to the non-interactive key ex-
change protocol of Sakai, Ohgishi and Kasahara [29]. In the next section, we will
review their scheme after covering relevant background material.

3 Pairing-Based Key Agreement with User Anonymity

In one of the pioneering works of pairing-based cryptography, Sakai et al. sug-
gested an identity-based, non-interactive key agreement scheme using bilinear
pairings [29]. In this section, we extend this key agreement scheme. We replace
the identities of the participants by pseudonyms and our new scheme provides
unconditional anonymity to participating users.

3.1 Preliminaries

We briefly review bilinear pairings and the original non-interactive key agreement
scheme of Sakai et al. For a detailed presentation of pairings and cryptographic
applications thereof see Blake et al. [9] and references therein.

Bilinear Pairings. Consider two additive cyclic groups G and Ĝ and a multi-
plicative cyclic group GT , all of the same prime order n. A bilinear map e is a
map e : G × Ĝ → GT with following properties.

1. Bilinearity: For all P ∈ G, Q ∈ Ĝ and a, b ∈ Zn, e(aP, bQ) = e(P, Q)ab.
2. Non-degeneracy: The map does not send all pairs in G × Ĝ to unity in

GT .
3. Computability: There is an efficient algorithm to compute e(P, Q) for any

P ∈ G and Q ∈ Ĝ.

Our protocols, like many pairing-based cryptographic protocols, use a special
form of bilinear map called a symmetric pairing which has G = Ĝ. For such
pairings e(P, Q) = e(Q, P) for any P, Q ∈ G. The modified Weil pairing over
elliptic curve groups [34] is an example of a symmetric bilinear pairing. In the
rest of the paper, unless otherwise specified, all bilinear pairings are symmetric.

The Bilinear Diffie-Hellman Assumption. The Bilinear Diffie-Hellman
(BDH) problem is to compute e(P, P)abc ∈ GT given a generator P of G and
elements aP, bP, cP for a, b, c ∈ Z

∗
n. An equivalent formulation of the problem,

due to the bilinearity of the map, is to compute e(A, B)c given a generator P of
G, and elements A, B and cP .

If there is no efficient algorithm to solve the BDH problem for 〈G, GT , e〉, they
are considered to satisfy the BDH assumption.

Boneh-Franklin Setup and Non-Interactive Key Agreement. In a
Boneh-Franklin Identity-Based Encryption (BF-IBE) setup [1], a trusted author-
ity, called a private key generator (PKG), generates private keys (di) for clients
using their well-known identities (IDi) and a master secret s. A client with iden-
tity IDi receives the private key di = sH(IDi) ∈ G, where H : {0, 1}∗ → G

∗ is a

Pairing-Based Onion Routing 99

full-domain cryptographic hash function and G
∗ denotes the set of all elements

in G except the identity.
Sakai et al. observed that, with such a setup, any two clients of the same

PKG can compute a shared key using only the identity of the other participant
and their own private keys. Only the two clients and the PKG can compute
this key. For two clients with identities IDA and IDB, the shared key is given
by KAB = e(QA, QB)s = e(QA, dB) = e(dA, QB) where QA = H(IDA) and
QB = H(IDB).

Dupont and Enge proved this protocol is secure in the random oracle model
assuming the BDH problem in 〈G, GT , e〉 is hard [8].

3.2 Anonymous Key Agreement

We observe that by replacing the identity hashes with pseudonyms generated
by users, a key agreement protocol with unconditional anonymity is possible. In
our protocol, a participant can confirm that the other participant is a client of
the same PKG, but can not determine his identity. Each client can randomly
generate many possible pseudonyms and the corresponding private keys.

Suppose Alice, with (identity, private key) pair (IDA, dA), is seeking ano-
nymity. She generates a random number rA and creates the pseudonym and
corresponding private key (PA = rAQA = rAH(IDA), rAdA = sPA). In a key
agreement protocol, she sends the pseudonym PA instead of her actual identity
to another participating client, who may or may not be anonymous. For two
participants (say Alice and Bob) with pseudonyms PA and PB , the shared session
key is given as

KAB = e(PA, PB)s = e(QA, QB)rArBs

where rA and rB are random numbers generated respectively by Alice and Bob. If
Bob does not wish to be anonymous, he can just use rB = 1 instead of a random
value, resulting in PB = QB. If persistent pseudonymity is desired instead of
anonymity, the random values can easily be reused.

Two participants can perform a session key agreement by exchanging pseudo-
nyms. Further, two participants can also perform an authenticated key agree-
ment by modifying any secure symmetric-key based mutual authentication
protocol and simply replacing their identities by their pseudonyms.

One-Way Anonymous Key Agreement. Anonymous communication gen-
erally requires anonymity for just one of the participants; the other participant
often works as a service provider and the anonymous participant needs to con-
firm her identity. In the key agreement protocol, the service provider uses her
actual identity rather than a pseudonym. Further, in this one-way anonymity
setting two participants can agree on a session key in a non-interactive manner.
A non-interactive scheme to achieve this is defined next.

Suppose Alice and Bob are clients of a PKG. As before, Alice has identity
IDA and private key dA = sQA = sH(IDA). Alice wishes to remain anonymous
to Bob, but she knows Bob’s identity IDB.

100 A. Kate, G. Zaverucha, and I. Goldberg

1. Alice computes QB = H(IDB). She chooses a random integer rA ∈ Z
∗
n,

generates the corresponding pseudonym PA = rAQA and private key rAdA =
sPA, and computes the session key KAB = e(sPA, QB) = e(QA, QB)srA . She
sends her pseudonym PA to Bob.

2. Bob, using PA and his private key dB, computes the session key KAB =
e(PA, dB) = e(QA, QB)srA .

Note that in step 1, Alice can also include a message for Bob symmetrically
encrypted with the session key; we will use this in Section 4. Note also that in
practice, the session key is often derived from KAB, and not KAB itself.

Key Authentication and Confirmation. In most one-way anonymous com-
munication situations, it is also required to authenticate the non-anonymous ser-
vice provider. With the non-interactive protocols of this section, the key is implic-
itly authenticated; Alice is assured that only Bob can compute the key. If Alice
must be sure Bob has in fact computed the key, explicit key confirmation can be
achieved by incorporating any symmetric-key based challenge-response protocol.

3.3 Security and Anonymity

In this section, we discuss the security and anonymity of our key agreement
schemes in the random oracle model. We make following claims:

Unconditional Anonymity: It is impossible for the other participant in a pro-
tocol run, the PKG or any third party to learn the identity of an anonymous
participant in a protocol run.

No Impersonation: It is infeasible for a malicious client of the PKG to im-
personate another (non-anonymous) client in a protocol run. In the case of
persistent pseudonymity, it is not feasible for a malicious entity to commu-
nicate using a different entity’s pseudonym.

Session Key Secrecy: It is infeasible for anyone other than the two partici-
pants or the PKG to determine a session key generated during a protocol
run.

Next, we present informal proofs for each of our claims. For complete security
proofs, we refer the reader to the full version of this paper [15].

Unconditional Anonymity. For an anonymous client with identity IDC , the
pseudonym PC = rCQC ∈ G is the only parameter exchanged during the pro-
tocol that is derived from her identity. Because G is a cyclic group of prime
order, multiplying by the random rC perfectly blinds the underlying identity.
The anonymity set is restricted to the clients of a PKG, unless a random pair
(U, dU) ∈ G is made public. In the latter case, anyone can generate a pseudonym
and participate in the protocol using (U, dU).

No Impersonation. Suppose an adversarial client with IDadv, dadv wishes to
impersonate a non-anonymous participant (say, Bob with IDB) while communi-
cating with an anonymous client with pseudonym PA. The adversary would need

Pairing-Based Onion Routing 101

to compute KAB = e(PA, QB)s given PA, QB, QAdv and sQAdv. But this is just
the BDH problem, so under the BDH assumption on 〈G, GT , e〉, impersonation
of other clients is infeasible.

Similarly, if the adversary wishes to communicate with Bob using the per-
sistent pseudonym PA of some other pseudonymous entity, it must compute
KAB = e(PA, QB)s given PA, QB, QAdv and sQAdv. Again, the adversary must
solve the BDH problem.

Session Key Secrecy. Dupont and Enge [8] prove the security of the key
agreement scheme of Sakai et al. in the random oracle model. According to
this proof, an attacker cannot compute the shared key if the BDH assumption
holds on 〈G, GT , e〉, and H is modelled by a random oracle. Our protocol simply
modifies that of Sakai et al. to use Pi = H ′(IDi) instead of Qi = H(IDi), where
H ′(x) = ri · H(x) for a random value ri, so the proof of security in [8] is easily
modified to suit our protocol.

3.4 Distributed PKG

The PKG in the BF-IBE framework, with the master key, has the power to
decrypt all messages encrypted for clients. As our schemes use the same setup
as BF-IBE, the PKG can compute a session key from the publicly available
pseudonyms and the master key s. Due to this, compromise of the PKG is a
single point of failure for security.

Boneh and Franklin suggest the use of a distributed PKG instead a single
PKG to mitigate this problem. Their distributed PKG uses t out of m threshold
cryptography [31], which involves distributing the master key information among
m PKGs, such that any t of them, but no fewer, can compute the master key or
generate a private key for a client. Their key distribution scheme uses a dealer
who actually decides the master key and thus becomes a candidate for attack
and can be a single point of failure. Instead, we suggest the use of a distributed
key generation protocol such as that of Pedersen [25] or Gennaro et al. [12].
In these protocols, a master key is generated in a completely distributed way
with each of m PKGs contributing a random share. The distributed design is
additionally more robust; at any given time only t of the m PKGs must be online
in order for a client to retrieve his private key.

3.5 Applications of Our Anonymity Schemes

Our anonymous key agreement schemes can be used to perform anonymous
communication in any setting having a BF-IBE setup. In recent years, numerous
BF-IBE based solutions have been suggested for various practical situations,
such as ad-hoc networks. [4,16,30] Our anonymous key agreement schemes can
be used in all of these setups without any extra effort. In this paper, we focus on
a new pairing-based onion routing protocol which achieves forward secrecy and
constructs circuits without telescoping. We describe this protocol in the next
section.

102 A. Kate, G. Zaverucha, and I. Goldberg

4 Pairing-Based Onion Routing

Low-latency onion routing requires one-way anonymous key agreement and for-
ward secrecy. In this section, we describe a new pairing-based onion routing
protocol using the non-interactive key agreement scheme defined in Section 3.2.

Our onion routing protocol has a significant advantage over the original onion
routing protocol [14] as well as the protocol used in Tor [7]; it provides a practical
way to achieve forward secrecy without building circuits by telescoping. Though
this is possible with the original onion routing protocol, that method involves
regularly communicating authenticated copies of ORs’ public keys to the system
users; forward secrecy is achieved by periodically rotating these keys. This does
not scale well; every time the public keys are changed all users must contact
a directory server to retrieve the new authenticated keys. However, our onion
routing protocol uses ORs’ identities, which users can obtain or derive without
repeatedly contacting a central server, thus providing practical forward secrecy
without telescoping.

4.1 Design Goals and Threat Model

As our protocol only differs from existing onion routing protocols in the circuit
construction phase, our threat model is that of Tor. For example, adversaries
have complete control over some part (but not all) of the network, as well as
control over some of the nodes themselves.

We aim at frustrating attackers from linking multiple communications to or
from a single user. Like Tor, we do not try to develop a system secure against a
global observer, which can in theory follow end-to-end traffic. Further, it should
not be feasible for any node to determine the identity of any node in a circuit
other than its two adjacent nodes. Finally, we require forward secrecy: after
some amount of time, the session keys used to protect node identities and the
contents of messages are irrecoverable, even if all participants in the network are
subsequently compromised.

4.2 Pairing-Based Onion Routing Protocol

An onion routing protocol involves a service provider, a set of onion routers,
and users. In our protocol, a user does not build the circuit incrementally via
telescoping, but rather in a single pass. The user chooses � ORs from the available
pool and generates separate pseudonyms for communicating with each of them.
The user computes the corresponding session keys and uses them to construct a
message with � nested layers of encryption. This process uses the protocol given
in Section 3.2 � times.

The service provider works as the PKG for the ORs and provides private keys
for their identities.

Forward Secrecy. There are two time-scale parameters in our protocol: the
master key validity period (MKVP) and the private key validity period (PKVP).

Pairing-Based Onion Routing 103

Both of these values relate to the forward secrecy of the system. The PKVP
specifies how much exposure time a circuit has against compromises of the ORs
that use it. That is, until the PKVP elapses, the ORs have enough information
to collectively decrypt circuit construction onions sent during that PKVP. After
each PKVP, ORs discard their current private keys and obtain new keys from
the PKGs. This period can be short, perhaps on the order of an hour.

The MKVP specifies the circuit’s exposure time against compromises of the
(distributed) PKG which reveal the master secret s. Because changing s involves
the participation of all of the ORs as well as the PKGs, we suggest the MKVP
be somewhat longer than the PKVP, perhaps on the order of a day. Remember
that in the t of m distributed PKG, if at least m − t + 1 PKG members are
honest and not compromised, no one will ever learn the value of a master secret.

Protocol Description. As discussed above, we propose the use of a distributed
PKG, but for simplicity, our discussion will consider the PKG to be a single
entity. Using a distributed PKG affects only the setup and key generation steps.

Setup: Given the security requirements, the PKG generates a digital signature
key pair (for any secure digital signature scheme). It also generates a prime
n, two groups G (written additively) and GT (written multiplicatively) of
order n and a bilinear map e : G×G → GT . Finally, the PKG chooses a full-
domain cryptographic hash function H : {0, 1}∗ → G

∗. The PKG publishes
all of these values except its private signature key.

Key Generation: For each MKVP, the PKG generates a random master key
s ∈ Z

∗
n and a random U ∈ G, and calculates sU . The PKG publishes a signed

copy of (vm, U, sU), where vm is a timestamp for the MKVP in question. This
U is a common value to be shared by all users of the system.

For every valid OR with identity IDi, and for every PKVP v that over-
laps with the MKVP, the PKG generates the private key dvi = sH(v||IDi).
The PKG distributes these private keys, as well as a copy of the signed
(vm, U, sU), to the appropriate ORs over a secure authenticated forward-
secret channel. If an OR becomes compromised, the PKG can revoke it by
simply no longer calculating its values of dvi.

Note that this key distribution can be batched; that is, the PKG can
precompute the master keys and private keys in advance (say a week at a
time), and deliver them to the ORs in batches of any size from one PKVP
at a time on up. This batching reduces the amount of time the PKG has to
be online, and does not sacrifice forward secrecy. On the other hand, large
batches will delay the time until a revocation becomes effective.

User Setup: Once every MKVP vm, each user must obtain a new signed tuple
(vm, U, sU) from any OR or from a public website. Once every PKVP v,
the user computes the following pairing for each OR i and stores the results
locally:

γvi = e(sU, Qvi) = e(U, Qvi)s where Qvi = H(v||IDi)

104 A. Kate, G. Zaverucha, and I. Goldberg

Circuit Construction: During a PKVP v, a user U chooses a set of ORs (say
A, B, . . . , N) and constructs a circuit U ⇔ A ⇔ B ⇔ · · · ⇔ N with the
following steps.
1. For each OR i in the circuit, the user generates a random integer ri ∈

Z
∗
n and computes the pseudonym PUi = riU and the value γvi

ri =
e(U, Qvi)sri From γvi

ri two session keys are derived: a forward session
key KUi and a backward session key KiU . Finally, the following onion is
built and sent to A, the first OR in the circuit:

rAU, {B, rBU, {· · · {N, rNU, {∅}KUN} · · · }KUB}KUA

Here {· · · }KUi is symmetric-key encryption and ∅ is an empty message
which informs N that it is the exit node.

2. After receiving the onion, the OR with identity IDi uses the received
riU and its currently valid private key dvi to compute e(riU, dvi) =
e(U, Qi)ris = γvi

ri . It derives the forward session key KUi and the back-
ward session key KiU . It decrypts the outermost onion layer {· · · }KUi to
obtain the user’s next pseudonym, the nested ciphertext, and the identity
of the next node in the circuit. The OR then forwards the pseudonym
and ciphertext to the next node. To avoid replay attacks, it also stores
pseudonyms (see Section 5). The process ends when an OR (N in this
case) gets ∅.

3. The exit node N sends a confirmation message encrypted with the back-
ward session key {Confirm}KNU to the previous OR in the circuit. Each
OR encrypts the confirmation with its backward session key and sends
it to the previous node, until the ciphertext reaches the user. The user
decrypts the ciphertext layers to verify the confirmation.

4. If the user does not receive the confirmation in a specified time, she
selects a different set of ORs and repeats the protocol.

The circuit construction is further illustrated in Figure 1, where a user builds
a three-node circuit.

Anonymous Communication: After the circuit is constructed, communica-
tion proceeds in the same manner as Tor. The user sends onions through the
circuit with each layer encrypted with the forward keys KUi, and each hop
decrypts one layer. Replies are encrypted at each hop with the backward key
KiU , and the user decrypts the received onion.

Note that as an optimization, one or more messages can be bundled inside
the original circuit construction onion, in place of ∅.

4.3 Security Analysis

Camenisch and Lysyanskaya [2] formally define the requirements of a secure
onion routing construction in the universal composability (UC) framework in
terms of onion-correctness, onion-integrity and onion-security. We observe that
our circuit construction trivially achieves onion-correctness and onion-integrity.

Pairing-Based Onion Routing 105

User
〈U, sU〉

ORA

〈A, sQvA〉
ORB

〈B, sQvB〉
ORC

〈C, sQvC〉

rAU, {B, rBU, {C, rC U, {∅}KUC
}KUB

}KUA

rBU, {C, rCU, {∅}KUC
}KUB

rCU, {∅}KUC

{Confirm}KCU

{{Confirm}KCU
}KBU

{{{Confirm}KCU
}KBU

}KAU

Fig. 1. A user builds a circuit with three ORs

They also define a secure (in the UC framework) onion routing circuit con-
struction using any IND-CCA-2 public key encryption scheme. As an encryption
in our circuit construction (rUi, {· · · }KUi) is a generalization of the BasicIdent
scheme (rUi, {· · · }⊕{KUi}) from BF-IBE [1], it is IND-CPA secure. Along simi-
lar lines to [1], we can use a technique due to Fujisaki-Okamoto [11] to convert our
scheme to an IND-CCA-2 construction: (rUi, {σ}KUi, {· · · }H′(σ)) for a random
binary string σ and a cryptographic hash H ′. Therefore, a combination of this
IND-CCA-2 encryption and the Camenisch-Lysyanskaya circuit construction is
secure in the UC framework. But such a circuit construction is less efficient than
ours, and we consider proving onion-security for our circuit construction defined
in Section 4.2 to be important future work.

4.4 Advantages over First-Generation Onion Routing

As discussed earlier, it is possible to achieve forward secrecy in first-generation
onion routing by periodically replacing the public-private key pairs of the ORs.
Following the change, the service provider publishes signed copies of the new
OR public keys after getting authentic copies from the ORs. However, this re-
quires all users to regularly obtain fresh authenticated public key information for
all ORs.

In contrast, with our system, each user only needs to obtain the single au-
thenticated value (vm, U, sU), and only once every MKVP. The user can then
calculate the required γvi values on her own until the end of that period, thus
reducing the load on the service provider. This load is further reduced by having
the service provider never communicate directly with users at all, but only with
the ORs.

As a consequence, our pairing-based onion routing is a more practical solution
for low-latency anonymous communication.

106 A. Kate, G. Zaverucha, and I. Goldberg

4.5 Advantages over Telescoping in Tor

The Tor network, in practice, uses the telescoping approach based on the Diffie-
Hellman key exchange to form an anonymity circuit. We find the following ad-
vantages for our protocol over the telescoping approach.

– Although our above-defined protocol requires occasional private key genera-
tion for ORs to achieve forward secrecy, it saves communication cost at every
circuit construction by avoiding telescoping. We discuss our communication
and computational advantages in Section 6.4.

– The absence of telescoping in our protocol provides flexibility to the user to
modify a circuit on the fly. For example, suppose a user U has constructed
a circuit (U ⇔ A ⇔ B ⇔ · · · ⇔ K ⇔ · · · ⇔ N). In our protocol, she can
bundle instructions to immediately replace K with K ′ in the next message,
while keeping the remaining circuit intact. Her circuit would then be (U ⇔
A ⇔ B ⇔ · · · ⇔ K ′ ⇔ · · · ⇔ N).

4.6 Issues with the Proposed Scheme

The certifying authorities in the Tor system need to be less trusted than the
PKG in our scheme. With a short PKVP and MKVP (compared to the key
replacement period in Tor), our PKGs (any t of them) need to be online with
greater reliability. Further, if fewer than t are available, the whole system is
paralysed after the current batch.

It is also possible for t malicious PKGs to passively listen to all of the traffic
as they can compute private keys for all ORs. A geographically and politically
distributed implementation of m PKGs certainly reduces this possibility.

To passively decrypt an OR’s messages, an adversary of the Tor system must
know the OR’s private key, as well as the current Diffie-Hellman key (established
for each circuit). In our scheme, as it is non-interactive, an adversary who knows
only the OR’s private key can decrypt all of the messages for that OR. This
may be an acceptable trade-off, considering the advantages gained from the
non-interactive protocol.

5 Systems Issues

In this section, we describe how components of an onion routing system such as
Tor would behave in a pairing-based setting. To implement pairings, we must
choose groups where pairings are known, and are efficiently computable. Once
these groups are fixed we can estimate the computational cost required to con-
struct a circuit. The next section will compare the cost of our scheme to the cost
of setting up a circuit in Tor.

PKG. As discussed in Section 3.4, the PKG should be distributed across servers
run by independent parties. To provide robustness, a “t of m” secret sharing
scheme may be employed; this would mean that an OR need only contact t of

Pairing-Based Onion Routing 107

m “pieces” of the PKG to learn its complete private key. Naturally, private key
information must always be communicated over a secure channel. We note that
end users of the system will have no reason to contact the PKG; the PKG only
communicates with ORs, and sends one private key (an element of G) per PKVP
to each. The load on the PKG should therefore be quite manageable. For added
protection from attack, the PKG could even situate itself as a “hidden service”
[7, §5], so that only known ORs could even connect to it, and no one would know
where many of the pieces were located.

Channel Security. The security and forward secrecy depends on the chan-
nel between the PKG and the OR used to compute the private key. With a
non-distributed PKG, an attacker can compromise an OR’s private key by com-
promising this channel. The distributed PKG provides robustness here as well,
since the attacker must subvert t secure channels to reconstruct the private key
from the shares.

Onion Router Identities. Users calculate γvi based on each router’s identity
IDi. This identity can be as simple as a port number and a hostname or IP
address. In that case, the BF-IBE setup ensures that if a user knows how to
contact an OR, she automatically knows its public key.

The value γvi is also based on the current PKVP v. To avoid requiring tight
synchronization between the clocks of ORs and users, ORs should keep their
private keys dvi around for a short time after the official end of the PKVP, but
must securely discard them after that.

Replay Prevention. To avoid attacks where adversaries replay old circuit con-
struction onions, ORs should store the pseudonyms they receive for the duration
of a PKVP and drop onions which re-use a pseudonym. After circuit construction,
replay attacks can be prevented with existing methods (see [6] for an example).

Directory Servers. Directory servers can be used to provide signed informa-
tion about the list of available ORs to the users of the system. The directory
servers in Tor, for example, provide a list of the ORs along with their public
keys, status, capabilities and policies. In our pairing-based setting, of course,
the public keys are unnecessary.

6 Performance

In this section, we consider the cost of creating a circuit from a user through
� onion routers. We estimate the computational cost, and count the number of
AES-encrypted network communications. We compare the performance of our
system to that of Tor.

6.1 Security Levels and Parameter Sizes

Before comparing the costs of the cryptography in both schemes we determine
the parameter sizes required to provide the same level of security currently pro-
vided by Tor.

108 A. Kate, G. Zaverucha, and I. Goldberg

Tor uses public key parameters to provide security at the 80-bit level [13]. The
discrete log problem is in a 1024-bit field, and the RSA problem is also at the
1024-bit level. The symmetric parameters provide significantly more security, by
using AES with a 128-bit key.

We must choose appropriate groups G and GT over which our pairing will
be defined, in order to offer similar strength. The current favourite choice is the
group of torsion points of an elliptic curve group over a finite field, with either
the Weil or Tate pairing. To achieve an 80-bit security level, the elliptic curve
discrete log problem an attacker faces must be in a group of at least 160 bits.
Due to the reduction of Menezes, Okamoto and Vanstone [20], we must also
ensure that discrete logs are intractable in the target group, GT . In our case,
GT = Fpk , where k is the embedding degree of our curve taken over Fp. We must
then choose our curve E, a prime p, and embedding degree k such that E(Fp)
has a cyclic subgroup of prime order n ≈ 2160, and pk is around 21024. This can
be achieved in a variety of ways, but two common choices are k = 2, p ≈ 2512

and k = 6, p ≈ 2171. Pairing implementations with both sets of parameters are
available in the PBC library [18]. Efficiency studies suggest that k = 2 and the
Tate pairing can offer better performance at this security level [17], so we make
that choice.

6.2 Cost of Building a Circuit with Tor

Tor builds circuits by telescoping. A user Uriel chooses a Tor node (say Alice),
and establishes a secure channel using an encrypted Diffie-Hellman exchange.
She then picks a second node, Bob, and over this secure channel, establishes a
new secure channel to Bob with another (end-to-end) encrypted Diffie-Hellman
exchange. She proceeds in this manner until the circuit is of some desired length
�. For details, see the Tor specification [6]. Note that Uriel cannot use the same
Diffie-Hellman parameters with different nodes, lest those nodes be able to de-
termine that the same user was communicating with each of them.

Each Diffie-Hellman exchange requires Uriel to perform two modular exponen-
tiations with 1024-bit moduli and 320-bit exponents. Likewise, each server also
performs two of these exponentiations. Uriel RSA encrypts the Diffie-Hellman
parameter she sends the server, and the server decrypts it. The AES and hashing
operations involved have negligible costs compared to these.

Uriel’s circuit construction to Alice takes two messages: one from Uriel to
Alice, and one from Alice to Uriel. When Uriel extends this circuit to Bob (via
Alice), there are four additional messages: Uriel to Alice, Alice to Bob, Bob to
Alice, and Alice to Uriel. Continuing in this way, we see that the total number
of messages required for Tor to construct a circuit of length � is �(� + 1). Note
that each of these messages needs to be encrypted and decrypted at each hop.

6.3 Cost of Building a Circuit with Paring-Based Onion Routing

In order to create a circuit of length � with our scheme, the user Uriel must choose
� random elements ri of Z

∗
n. As above, Uriel should not reuse these values. She

Pairing-Based Onion Routing 109

Table 1. Comparison of costs of setting up a circuit of length �. The values in the
Tor column are based on the Tor specification [6]. PB-OR is our pairing-based onion
routing scheme.

Operation Time Tor PB-OR
client each server client each server

Pairing 2.9 ms 0 0 0 1

RSA decryption 2.7 ms 0 1 0 0

Modular exponentiation 1.5 ms 2� 2 0 0

Multiplication in G 1.0 ms 0 0 � 0

Exponentiation in GT 0.2 ms 0 0 � 0

RSA encryption 0.1 ms � 0 0 0

Total time (ms) 3.1� 5.7 1.2� 2.9

Total AES-encrypted messages �(� + 1) 2�

then computes rSU and γS
rS , and derives the forward and backward keys KUS

and KSU from γS
rS , for each server S in the circuit. Each server computes

e(rSU, dS) = γS
rS for its current private key dS and derives KUS and KSU .

Uriel creates one message, as in Figure 1, and sends it to the first server in
the chain. This server decrypts a layer and sends the result to the second server
in the chain, and so on, for a total of � hop-by-hop encrypted messages. At the
end of the chain, the last server replies with a confirmation message that travels
back through the chain, producing � more messages, for a total of 2�.

6.4 Comparison and Discussion

We summarize the results of the previous two sections in Table 1. We count the
number of “bignum” operations for each of the client and the servers, both for Tor
and for our pairing-based onion routing protocol. We ignore the comparatively
negligible computational costs of AES operations and hashing.

For each bignum operation, we include a benchmark timing. These timings were
gathered on a 3.0 GHz Pentium D desktop using the PBC pairing-based cryptog-
raphy library [18]. We can see that the total computation time to construct a cir-
cuit of length � using our method is 61% less on the client side and 49% less on the
server side as compared to using Tor. In addition, our method uses only a linear
number of AES-encrypted messages, while Tor uses a quadratic number.

7 Conclusion

We have presented a new pairing-based approach for circuit construction in onion
routing anonymity networks. We first extended the protocol of Sakai et al. [29]
to allow for one-way or two-way anonymous or pseudonymous key agreement.
We then used this extension to produce a new circuit construction protocol for
onion routing networks. Our new pairing-based protocol creates circuits in a
single pass, and also provides forward secrecy.

110 A. Kate, G. Zaverucha, and I. Goldberg

This protocol uses significantly less computation and communication than
the corresponding protocol in Tor, and reduces the load on the network support
infrastructure. These improvements can be used to enhance the scalability of
low-latency anonymity networks.

Acknowledgements. We would like to thank the Natural Sciences and Engi-
neering Research Council of Canada for supporting this research with a Discovery
Grant (Kate, Goldberg) and a PGS-D postgraduate scholarship (Zaverucha). We
thank the anonymous reviewers for their constructive feedback, which improved
the quality of this paper. We would also like to thank Sk. Md. Mizanur Rahman
for providing us with an advance copy of the proceedings version of [26].

References

1. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

2. Camenisch, J., Lysyanskaya, A.: A Formal Treatment of Onion Routing. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 169–187. Springer, Heidelberg (2005)

3. Chaum, D.: Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Communications of the ACM 4(2), 84–88 (1981)

4. Chien, H., Lin, R.: Identity-based Key Agreement Protocol for Mobile Ad-hoc
Networks Using Bilinear Pairing. In: SUTC’06. IEEE International Conference on
Sensor Networks, Ubiquitous, and Trustworthy Computing, pp. 520–529. IEEE
Computer Society Press, Los Alamitos (2006)

5. Dai, W.: PipeNet 1.1. Post to Cypherpunks mailing list (November 1998)
6. Dingledine, R., Mathewson, N.: The Tor Protocol Specification (accessed February

2007), http://tor.eff.org/svn/trunk/doc/spec/tor-spec.txt
7. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion

Router. In: Proceedings of the 13th USENIX Security Symposium (August 2004)
8. Dupont, R., Enge, A.: Provably secure non-interactive key distribution based on

pairings. Discrete Applied Mathematics 154(2), 270–276 (2006)
9. Blake, I. (ed.): Advances in Elliptic Curve Cryptography. London Mathematical So-

ciety Lecture Note Series, vol. 317. Cambridge University Press, Cambridge (2005)
10. Freedman, M.J., Morris, R.: Tarzan: A Peer-to-Peer Anonymizing Network Layer.

In: CCS 2002. Proceedings of the 9th ACM Conference on Computer and Com-
munications Security, ACM Press, Washington, DC (2002)

11. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 537–554.
Springer, Heidelberg (2001)

12. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure Distributed Key Gener-
ation for Discrete-Log Based Cryptosystems. Journal of Cryptology 20(1), 51–83
(2007)

13. Goldberg, I.: On the Security of the Tor Authentication Protocol. In: Danezis, G.,
Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 316–331. Springer, Heidelberg
(2006)

http://tor.eff.org/svn/trunk/doc/spec/tor-spec.txt

Pairing-Based Onion Routing 111

14. Goldschlag, D., Reed, M., Syverson, P.: Hiding Routing Information. In: Anderson,
R. (ed.) Information Hiding. LNCS, vol. 1174, pp. 137–150. Springer, Heidelberg
(1996)

15. Kate, A., Zaverucha, G.M., Goldberg, I.: Pairing-Based Onion Routing. Techni-
cal Report CACR, 2007-08, Centre for Applied Cryptographic Research (2007),
Available at
http://www.cacr.math.uwaterloo.ca/techreports/2007/cacr2007-08.pdf

16. Khalili, A., Katz, J., Arbaugh, W.: Toward Secure Key Distribution in Truly Ad-
Hoc Networks. In: IEEE Workshop on Security and Assurance in Ad-Hoc Networks
2003, pp. 342–346. IEEE Computer Society Press, Los Alamitos (2003)

17. Koblitz, N., Menezes, A.: Pairing-Based Cryptography at High Security Levels. In:
Smart, N.P. (ed.) Cryptography and Coding. LNCS, vol. 3796, pp. 13–36. Springer,
Heidelberg (2005)

18. Lynn, B.: PBC Library – The Pairing-Based Cryptography Library (accessed
February 2007), http://crypto.stanford.edu/pbc/

19. Mauw, S., Verschuren, J., de Vink, E.: A Formalization of Anonymity and Onion
Routing. In: Samarati, P., Ryan, P.Y A, Gollmann, D., Molva, R. (eds.) ESORICS
2004. LNCS, vol. 3193, pp. 109–124. Springer, Heidelberg (2004)

20. Menezes, A., Okamoto, T., Vanstone, S.: Reducing Elliptic Curve Logarithms to
Logarithms in a Finite Field. In: STOC 1991. Proc. of the twenty-third annual
ACM Symposium on Theory of Computing, pp. 80–89. ACM Press, New York
(1991)

21. Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography,
1st edn. CRC Press, Boca Raton, USA (1997)

22. Möller, B.: Provably Secure Public-Key Encryption for Length-Preserving Chau-
mian Mixes. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, Springer, Heidel-
berg (2003)

23. Okamoto, E., Okamoto, T.: Cryptosystems Based on Elliptic Curve Pairing. In:
Torra, V., Narukawa, Y., Miyamoto, S. (eds.) MDAI 2005. LNCS (LNAI), vol. 3558,
pp. 13–23. Springer, Heidelberg (2005)

24. Øverlier, L., Syverson, P.: Improving efficiency and simplicity of Tor circuit estab-
lishment and hidden services. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS,
vol. 4776, pp. 134–152. Springer, Heidelberg (2007)

25. Pedersen, T.: A Threshold Cryptosystem without a Trusted Party. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg
(1991)

26. Rahman, S., Inomata, A., Okamoto, T., Mambo, M., Okamoto, E.: Anonymous
Secure Communication in Wireless Mobile Ad-hoc Networks. In: ICUCT 2006.
LNCS, vol. 4412, pp. 140–149. Springer, Heidelberg (2006)

27. Reed, M., Syverson, P., Goldschlag, D.: Anonymous Connections and Onion Rout-
ing. IEEE Journal on Selected Areas in Communications 16(4), 482–494 (1998)

28. Rennhard, M., Plattner, B.: Introducing MorphMix: Peer-to-Peer based Anony-
mous Internet Usage with Collusion Detection. In: WPES 2002. Proceedings
of the Workshop on Privacy in the Electronic Society, Washington, DC, USA
(November 2002)

29. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: SCIS
2000. Symposium on Cryptography and Information Security (2000)

30. Seth, A., Keshav, S.: Practical Security for Disconnected Nodes. In: IEEE ICNP
Workshop on Secure Network Protocols, 2005 (NPSec), pp. 31–36. IEEE Computer
Society Press, Los Alamitos (2005)

http://www.cacr.math.uwaterloo.ca/techreports/2007/cacr2007-08.pdf
http://crypto.stanford.edu/pbc/

112 A. Kate, G. Zaverucha, and I. Goldberg

31. Shamir, A.: How to Share a Secret. Commun. ACM 22(11), 612–613 (1979)
32. Syverson, P., Tsudik, G., Reed, M., Landwehr, C.: Towards an Analysis of Onion

Routing Security. In: Federrath, H. (ed.) Designing Privacy Enhancing Technolo-
gies. LNCS, vol. 2009, pp. 96–114. Springer, Heidelberg (2001)

33. The Tor Project. Tor: anonymity online (accessed February 2007),
http://tor.eff.org/

34. Verheul, E.: Evidence that XTR Is More Secure than Supersingular Elliptic Curve
Cryptosystems. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp.
195–210. Springer, Heidelberg (2001)

http://tor.eff.org/

Nymble: Anonymous IP-Address Blocking�

Peter C. Johnson1, Apu Kapadia1,2, Patrick P. Tsang1, and Sean W. Smith1

1 Department of Computer Science
Dartmouth College

Hanover, NH 03755, USA
2 Institute for Security Technology Studies

Dartmouth College
Hanover, NH 03755, USA

{pete,akapadia,patrick,sws}@cs.dartmouth.edu

Abstract. Anonymizing networks such as Tor allow users to access Internet
services privately using a series of routers to hide the client’s IP address from
the server. Tor’s success, however, has been limited by users employing this
anonymity for abusive purposes, such as defacing Wikipedia. Website admin-
istrators rely on IP-address blocking for disabling access to misbehaving users,
but this is not practical if the abuser routes through Tor. As a result, administra-
tors block all Tor exit nodes, denying anonymous access to honest and dishonest
users alike. To address this problem, we present a system in which (1) honest
users remain anonymous and their requests unlinkable; (2) a server can complain
about a particular anonymous user and gain the ability to blacklist the user for fu-
ture connections; (3) this blacklisted user’s accesses before the complaint remain
anonymous; and (4) users are aware of their blacklist status before accessing a
service. As a result of these properties, our system is agnostic to different servers’
definitions of misbehavior.

1 Introduction

Anonymizing networks such as Crowds [25] and Tor [15] route traffic through inde-
pendent nodes in separate administrative domains to hide the originating IP address.
Unfortunately, misuse has limited the acceptance of deployed anonymizing networks.
The anonymity provided by such networks prevents website administrators from black-
listing individual malicious users’ IP addresses; to thwart further abuse, they blacklist
the entire anonymizing network. Such measures eliminate malicious activity through
anonymizing networks at the cost of denying anonymous access to honest users. In
other words, a few “bad apples” can spoil the fun for all. (This has happened repeatedly
with Tor.1)

Some approaches for blacklisting abusive users are based on pseudonyms [11, 13,
14,19]. In these systems, of which Nym [17] seems most relevant, users are required to

� This research was supported in part by the NSF, under grant CNS-0524695, and the Bureau of
Justice Assistance, under grant 2005-DD-BX-1091. The views and conclusions do not neces-
sarily reflect the views of the sponsors.

1 The Abuse FAQ for Tor Server Operators lists several such examples at http://tor.eff.org/faq-
abuse.html.en

N. Borisov and P. Golle (Eds.): PET 2007, LNCS 4776, pp. 113–133, 2007.

114 P.C. Johnson et al.

log into websites using an assigned pseudonym, thus assuring a level of accountability.
Unfortunately, this approach results in pseudonymity for all users—ideally, honest users
should enjoy full anonymity, and misbehaving users should be blocked.

To this end, we present a secure system in which users acquire an ordered collection of
nymbles, a special type of pseudonym, to connect to websites. Without additional data,
these nymbles are computationally hard to link, and hence using the stream of nymbles
simulates anonymous access to services. Websites, however, can blacklist users by ob-
taining a trapdoor for a particular nymble, allowing them to link future nymbles from
the same user—those used before the complaint remain unlinkable. Servers can there-
fore blacklist anonymous users without knowledge of their IP addresses while allowing
honest users to connect anonymously. Our system ensures that users are aware of their
blacklist status before they present a nymble, and disconnect immediately if they are
blacklisted. Furthermore, websites avoid the problem of having to prove misbehavior:
they are free to establish their own independent blacklisting policies. Although our work
applies to anonymizing networks in general, we consider Tor for purposes of exposi-
tion. In fact, any number of anonymizing networks can rely on the same nymble system,
blacklisting anonymous users regardless of their anonymizing network(s) of choice.

Our research makes the following contributions:

• Blacklisting anonymous users. We provide a means by which servers can blacklist
users of an anonymizing network without deanonymizing them. Honest users enjoy
anonymous access and are unaffected by the misbehavior of other users.

• Practical performance. A system such as ours, relying on a server to issue nymbles,
will be adopted only if performance is acceptable. Our protocol minimizes storage
requirements and the use of expensive asymmetric cryptographic operations.

• Prototype implementation. With the goal of contributing a workable system, we
have built a prototype implementation. We provide performance statistics to show
that our system is indeed a viable approach for selectively blocking users of large-
scale anonymizing networks such as Tor.

Many in the community worry that “deanonymization” will become a vehicle for
suppressing individuals’ rights. This project moves in the other direction, by allowing
websites to block users without knowing their identities, hopefully increasing main-
stream acceptance of anonymizing technologies such as Tor.

2 Related Work

Anonymous credential systems such as Camenisch and Lysyanskaya’s [7, 8] use group
signatures for anonymous authentication, wherein individual users are anonymous
among a group of registered users. Non-revocable group signatures such as Ring sig-
natures [26] provide no accountability and thus do not satisfy our needs to protect
servers from misbehaving users. Basic group signatures [1, 2, 3, 12] allow revocation
of anonymity by no one except the group manager. As only the group manager can
revoke a user’s anonymity, servers have no way of linking signatures to previous ones
and must query the group manager for every signature; this lack of scalability makes
it unsuitable for our goals. Traceable signatures [18, 30] allow the group manager to

Nymble: Anonymous IP-Address Blocking 115

release a trapdoor that allows all signatures generated by a particular user to be traced;
such an approach does not provide the backward anonymity that we desire, where a
user’s accesses before the complaint remain anonymous. Specifically, if the server is
interested in blocking only future accesses of bad users, then such reduction of user
anonymity is unnecessarily drastic. When a user makes an anonymous connection the
connection should remain anonymous. And misbehaving users should be blocked from
making further connections after a complaint.

In some systems, misbehavior can be defined precisely. For instance, double-
spending of an “e-coin” is considered misbehavior in anonymous electronic cash sys-
tems [4,10]. Likewise, compact e-cash [6], k-times anonymous authentication [28] and
periodic n-times anonymous authentication [5] deem a user to be misbehaving if she
authenticates “too many” times. In these cases, convincing evidence of misbehavior
is easily collected and fair judgment of misbehavior can be ensured. While such ap-
proaches can encourage certain kinds of fair behavior in anonymizing networks (e.g.,
e-coins can be used to control bandwidth consumption of anonymous users), it is dif-
ficult to map more complex notions of misbehavior onto “double spending” or related
approaches. It may be difficult to precisely define what it means to “deface a webpage”
and for Wikipedia to prove to a trusted party that a particular webpage was defaced.
How can the user be sure these “proofs” are accurate and fairly judged? Can we avoid
the problem of judging misbehavior entirely? In this paper we answer affirmatively by
proposing a system that does not require proof of misbehavior. Websites may complain
about users for any reason; our system ensures users are informed of complaints against
them, thus “making everybody happy”—except, of course, the misbehaving users, who
remain anonymous but are denied access.

Syverson et al. [27] provide a solution to a closely-related problem. To facilitate
anonymous and unlinkable transactions, users are issued a blind signature for access to
a service. This blind signature can be renewed with another blind signature (for the sub-
sequent connection) each time the user has been served. If a user misbehaves, a server
can terminate its service to that user by not renewing that user’s blind signature. As a re-
sult, misbehavior must be detected during the user’s connection. In contrast, our system
targets scenarios in which misbehavior is detected after the user has disconnected.

A preliminary work-in-progress version of this paper (suggesting the use of trusted
hardware) was presented at the Second Workshop on Advances in Trusted
Computing [29].

3 System Overview

Resource-based blocking. Our system provides servers with a means to block misbehav-
ing users of an anonymizing network. Blocking a particular user, however, is a formidable
task since that user can acquire several identities—the Sybil attack is well known [16] in
this regard. Our system, therefore, focuses on blocking resources that are (usually) con-
trolled by a single user. In this paper, we focus on IP addresses as the resource, but our
scheme generalizes to other resources such as identity certificates, trusted hardware, and
so on. Our system ensures that nymbles are bound to a particular resource, and servers
can block nymbles for that resource. We note that if two users can prove access to the

116 P.C. Johnson et al.

Fig. 1. System Architecture

same resource (e.g., if an IP address is reassigned to another user), they will obtain the
same stream of nymbles. Since we focus on IP address blocking, in the remainder of
the paper, the reader should be aware that blocking “a user” really means blocking that
user’s IP address (although, as mentioned before, other resources may be used). We will
address the practical issues related with IP-address blocking in Section 7.

Pseudonym Manager. The user must first contact the Pseudonym Manager (PM) and
demonstrate control over a resource; for IP-address blocking, a user is required to con-
nect to the PM directly (i.e., not through a known anonymizing network), as shown in
Figure 1. We assume the PM has knowledge about Tor routers, for example, and can
ensure that users are communicating with it directly.2 Pseudonyms are deterministically
chosen based on the controlled resource, ensuring that the same pseudonym is always
issued for the same resource.

Note that the user does not disclose what server he or she intends to connect to, and
therefore the user’s connections are anonymous to the PM. The PM’s duties are limited
to mapping IP addresses (or other resources) to pseudonyms.

Nymble Manager. After obtaining a pseudonym from the PM, the user connects to the
Nymble Manager (NM) through the anonymizing network, and requests nymbles for ac-
cess to a particular server (such as Wikipedia). Nymbles are generated using the user’s
pseudonym and the server’s identity. The user’s connections, therefore, are pseudony-
mous to the NM (as long as the PM and the NM do not collude) since the NM knows
only the pseudonym-server pair, and the PM knows only the IP address-pseudonym
pair. Note that due to the pseudonym assignment by the PM, nymbles are bound to
the user’s IP address and the server’s identity. To improve the collusion resistance of
our system, the PM’s duties can be split between n different PMs, which behave like
Mixes [9]. As long as at least one of the Mix nodes is honest, the user’s connections
will be pseudonymous to the NM and anonymous to the PM (or PMs). For the purposes
of clarity, we assume a single PM.

2 Note that if a user connects through an unknown anonymizing network or proxy, the security
of our system is no worse than that provided by real IP-address blocking, where the user could
have used an anonymizing network unknown to the server.

Nymble: Anonymous IP-Address Blocking 117

Fig. 2. The life cycle of a misbehaving user in our system

To provide the requisite cryptographic protection and security properties, the NM en-
capsulates nymbles within nymble tickets, and trapdoors within linking tokens. There-
fore, we will speak of linking tokens being used to link future nymble tickets. The
importance of these constructs will become apparent as we proceed.

As illustrated in Figure 2, in our system, time is divided into linkability windows of
duration W , each of which is split into smaller time periods of duration T , where the
number of time periods in a linkability window L = W

T is an integer. We will refer to
time periods and linkability windows chronologically as T1, T2, . . . , TL and W1, W2,
. . . respectively. While a user’s access within a time period is tied to a single nymble
ticket, the use of different nymble tickets across time periods grants the user anonymity
between time periods—smaller time periods provide users with enough nymble tickets
to simulate anonymous access. For example, T could be set to 5 minutes, and W to
1 day. The linkability window serves two purposes—it allows for dynamism since IP
addresses can get reassigned to different well-behaved users, making it undesirable to
blacklist an IP address indefinitely, and it ensures forgiveness of misbehavior after a
certain period of time. We will discuss the choice of these parameters in Section 7.

Blacklisting a user. If a user misbehaves, the website may link any future connec-
tion from this user within the current linkability window (e.g., the same day). Consider
Figure 2 as an example: A user misbehaves in a connection to a website during time
period T� within linkability window W2. The website detects the misbehavior and com-
plains in time period T�′ by presenting to the NM the nymble ticket associated with
the misbehaving user and obtaining a linking token therefrom. The website is then able
to link future connections by the user in time periods T�′+1, T�′+2, . . . , TL of linkabil-
ity window W2. Therefore, users are blacklisted for the rest of the day (the linkability
window) once the website has complained about that user. Note that the user’s connec-
tions in T�+1, . . . , T�′ remain unlinkable. This property ensures that a user’s previous
accesses remain anonymous, and allows our system to avoid judging misbehavior. We
now describe how users are notified of their blacklisting status.

Notifying the user of blacklist status. Users who make use of Tor expect their connec-
tions to be anonymous. If a server obtains a linking token for that user, however, it can
link that user’s subsequent connections (we emphasize that the user’s previous connec-
tions remain anonymous). It is of utmost importance, then, that users be notified of their
blacklisting status before they present a nymble ticket to a server. In our system, the user
can download the server’s blacklist and verify whether she is on the blacklist. If so, the

118 P.C. Johnson et al.

user disconnects immediately (the server learns that “some blacklisted user” attempted a
connection). Since the blacklist is cryptographically signed by the NM, the authenticity
of the blacklist is easily verified. Furthermore, the NM provides users with “blacklist
version numbers” so that the user can also verify the freshness of the blacklists. We
ensure that race conditions are not possible in verifying the freshness of a blacklist.
Our system therefore makes “everybody happy”—honest users can enjoy anonymity
through Tor, servers can blacklist the anonymous users of their choice, and users can
check whether they have been blacklisted before presenting their nymble ticket to the
server. If blacklisted, the user does not present the nymble ticket, and disconnects.

4 The Nymble Authentication Module

In this section we present the Nymble Authentication Module (Nymble-Auth), our cryp-
tographic construction that centers on the services provided by the Nymble Manager
(NM). Nymble-Auth allows users to authenticate to servers in a manner that both pre-
serves the privacy of honest users and protects servers from misbehaving users.
Nymble-Auth thus serves as the fundamental building block in our NYMBLE system.
For simplicity, in this section we assume that users contact the NM directly. In the next
section, we describe the entire NYMBLE system, which also includes the Pseudonym
Manager (PM).

4.1 The Model

Syntax. Nymble-Auth uses a semi-trusted third party, the Nymble Manager (NM), to
issue nymble tickets to users to authenticate themselves to servers. More specifically,
Nymble-Auth consists of three entities: the NM, a set of users, and a set of servers, and
a tuple of (possibly probabilistic) polynomial-time algorithms: Setup, NymbleTktGen,
LinkingTknExt, ServerVerify, NMVerify and Link.

To initialize Nymble-Auth, the NM invokes Setup to initialize the system. Upon
receiving a request from a user, the NM executes NymbleTktGen to generate a nymble
ticket for that user. The user can obtain service at a server by presenting a valid nymble
ticket for that server. Upon request from a server, the NM executes LinkingTknExt to
extract a linking token from a valid nymble ticket of some user for linking future nymble
tickets of the same user. The NM and the servers may run NMVerify and ServerVerify
respectively to check the validity of a nymble ticket. Finally, servers may run Link to
test if a user’s nymble ticket is linked to a linking token.

Security Notions. Roughly speaking, a secure Nymble-Auth must satisfy the following
security properties (we will formalize these properties in Appendix A.1):

1. Nymble tickets are Unforgeable. As a result, they can be obtained only from the
NM. Valid nymble tickets serve as legitimate authenticators issued by the NM for
users to authenticate to servers.

2. Nymble tickets are Uncircumventably Forward-Linkable. Once a linking token is
issued for a user/server/linkability-window tuple, all future nymble tickets for that
tuple are linkable. This property allows for blacklisting misbehaving users.

Nymble: Anonymous IP-Address Blocking 119

Fig. 3. Evolution of trapdoors and nymbles

3. Nymble tickets are Backward Anonymous. Without a linking token, nymble tickets
are all anonymous and thus unlinkable. Given a linking token for a user/server/
linkability-window tuple, previous nymble tickets are still anonymous, and so are
nymble tickets of the same user for other servers and other linkability windows.
This property ensures that all accesses by a user before the time of complaint remain
anonymous.

Communication Channels and Time Synchronization. There are different security
requirements for the communication channels between the entities in various protocols.
A channel may be confidential and/or authenticated at one or both ends. Such a channel
may be realized using SSL/TLS over HTTP under a PKI such as X.509. We call a
channel secure if it is both confidential and mutually-authenticated. A channel may also
be anonymous, in which case the communication happens through Tor. We emphasize
that while the NM, the PM, and the servers must set up PKI key-pairs, our system does
not require users to have PKI key-pairs.

All entities are assumed to share a synchronized clock. The requirement of the granu-
larity of the clock depends on the application in question. We will have more discussion
on how we ensure time synchronization and its consequences in Section 6.

4.2 Our Construction

Overview. At its core, Nymble-Auth leverages a hash-chain-like structure for estab-
lishing the relationship between nymbles and trapdoors. The same structure was used
by Ohkubo et al. [24] for securing RFID tags by ensuring both indistinguishability and
forward security of the tags. Although the primitive we use in this paper shares simi-
larities with that in [24], our construction possesses different security requirements that
must be satisfied to secure our system as a whole. In particular, the hash structure in
Ohkubo et al. [24] satisfies Indistinguishability and Forward Security, both of which
are captured by our security notion of Backward Anonymity. We formalize the Un-
forgeability requirement for Nymble-Auth, which assumes a different trust model from
that in [24]. Finally, we also introduce a unique security requirement called Uncircum-
ventable Forward Linkability.

As shown in Figure 3, trapdoors evolve throughout a linkability window using a
trapdoor-evolution function f . Specifically, the trapdoor for the next time period can be
computed by applying f to the trapdoor for the current time period. A nymble is eval-
uated by applying the nymble-evaluation function g to its corresponding trapdoor. We
will instantiate both f and g with collision-resistant cryptographic hash functions in our
construction. In essence, it is easy to compute future nymbles starting from a particular

120 P.C. Johnson et al.

trapdoor by applying f and g appropriately, but infeasible to compute nymbles other-
wise. Without a trapdoor, the sequence of nymbles appears unlinkable, and honest users
can enjoy anonymity. Even when a trapdoor for a particular time period is obtained, all
the nymbles prior to that time period remain unlinkable because it is infeasible to invert
f and g. The NM seeds the sequence of trapdoors (and hence the nymbles) with its
secret, the user’s ID, the server’s ID and the linkability window’s ID of the requested
connection. Seeds are therefore specific to source-destination-window combinations.
As a consequence, a trapdoor is useful only for a particular website to link a particular
user (or more specifically an IP address) during a particular linkability window.

Parameters. Let λ ∈ N be a sufficiently large security parameter. Let f and g be secure
cryptographic hash functions, H be a secure keyed hash, HMAC be a secure keyed-hash
message authentication code (HMAC), and Enc be a secure symmetric encryption, such
that their security parameters are polynomial in λ. Let |S| denote the number of servers.

Protocol Details. Now we detail each protocol in Nymble-Auth.

• (nmsk , (hmkNS1 , . . . , hmkNS|S|)) ← Setup(1λ).
To set up the system, the NM picks, all uniformly at random from their respective
key-spaces,
1. a key khkN for keyed hash function H ,
2. a key sekN for secure symmetric encryption Enc, and
3. |S| + 1 keys hmkN and hmkNS1 , hmkNS2 , . . . , hmkNS|S| for HMAC,

and sets its secret key nmsk as (khkN , sekN , hmkN , hmkNS1 , . . . , hmkNS|S|). The
NM stores nmsk privately and, for each server Sj , sends hmkNSj

to Sj through a
secure channel. Each Sj then stores its secret key sskj as (hmkNSj

) privately.
• nymbleTKT ← NymbleTktGennmsk (id, j, k, �).

To generate a nymble ticket that allows a user with identity id to authenticate to
server Sj during time period T� of linkability window Wk, the NM computes the
following using its secret key nmsk :
1. seed ← HkhkN

(id, j, k), the seed for trapdoor evolution,
2. tdr ← f (�)(seed), the trapdoor for T�,
3. nymble ← g(tdr), the nymble for the same time period,
4. tdr||id ← Enc.encryptsekN

(tdr||id), a ciphertext that only the NM can de-
crypt,

5. macN ← HMAChmkN (j||k||�||nymble||tdr||id), the HMAC for the NM,
6. macNS ← HMAChmkNSj

(j||k||�||nymble||tdr||id||macN), the HMAC for Sj .

Finally the NM returns nymbleTKT as 〈j, k, �, nymble, tdr||id, macN , macNS〉.
• valid/invalid ← ServerVerifysskj

(k, �, nymbleTKT).
To verify if a nymble ticket nymbleTKT=〈j′, k′, �′, nymble, tdr||id, macN ,macNS〉
is valid for authenticating to server Sj at time period T� during linkability window
Wk, Sj does the following using its key sskj :
1. return invalid if (j, k, �) �= (j′, k′, �′), or

HMAChmkNSj
(j′||k′||�′||nymble||tdr||id||macN) �= macNS,

2. return valid otherwise.

Nymble: Anonymous IP-Address Blocking 121

• valid/invalid ← NMVerifynmsk(j, k, �, nymbleTKT).
To verify if a nymble ticket nymbleTKT = 〈j′, k′, �′, nymble, tdr||id, macN , ·〉 is
valid for authenticating to server Sj at time period T� during linkability window
Wk, the NM does the following using its key nmsk:
1. return invalid if (j, k, �) �= (j′, k′, �′), or

HMAChmkN (j′||k′||�′||nymble||tdr||id) �= macN ,
2. return valid otherwise.

• linkingTKN/⊥ ← LinkingTknExtnmsk (j, k, �∗, nymbleTKT).
To extract the linking token from a nymble ticket nymbleTKT=〈·,·, �, ·, tdr||id, ·, ·〉
for server Sj’s use at time period T�∗ during linkability window Wk, the NM does
the following using his secret key nmsk :
1. return ⊥ if �∗ < � or NMVerifynmsk(j, k, �, nymbleTKT) = invalid,
2. compute tdr||id ← Enc.decryptsekN

(tdr||id),
3. pick tdr∗ uniformly at random from the range of f if a linking token has

already been issued for the (id, j, k)-tuple, otherwise compute tdr∗ as f (�∗−�)

(tdr) and record that a linking token has been issued for the (id, j, k)-tuple,3

4. return linkingTKN as 〈j, k, �∗, tdr∗〉.
• linked/not-linked ← Link(nymbleTKT, linkingTKN).

To test if a nymble ticket nymbleTKT = 〈j, k, �, nymble, ·, ·, ·〉 is linked by the
linking token linkingTKN = 〈j′, k′, �′, tdr′〉, anyone can do the following:

1. return not-linked if (j, k) �= (j′, k′) or � < �′, or if g(f (�−�′)(tdr)) �=
nymble,

2. return linked otherwise.

Security Analysis. We formalize the notions of Correctness, Unforgeability, Back-
ward Anonymity and Uncircumventable Forward Linkability in Appendix A.1. We now
state the following theorem about the security of Nymble-Auth, and sketch its proof in
Appendix A.2.

Theorem 1. Our Nymble-Auth construction is secure in the Random Oracle Model.

5 The NYMBLE System

We now describe the full construction of our system, focusing on the various interac-
tions between the Pseudonym Manager (PM), the Nymble Manager (NM), the servers
and the users.

Parameters. In addition to those in the Nymble-Auth module, parameters in the
NYMBLE system include the description of an additional secure cryptographic hash
function h and a secure signature scheme Sig with security parameters polynomial in
λ. Also, T denotes the duration of one time period and L denotes the number of time
periods in one linkability window. Let t0 be the system start time.

3 In Section 5.5, we will show how state about issued trapdoors is offloaded to servers.

122 P.C. Johnson et al.

5.1 System Setup

In this procedure, the NM and the PM set up the NYMBLE system together. The PM
picks a key khkP for keyed hash function H uniformly at random from the key-space.
The NM, on the other hand, does the following:

1. execute Setup of Nymble-Auth on some sufficiently large security parameter λ,
after which the NM gets its secret key nmsk and each server Sj gets its own secret
key sskj as described in the previous section,

2. generate a private/public-key-pair (x, y) for Sig using its key generation algorithm,
3. pick an HMAC key hmkNP for HMAC uniformly at random from the key-space

and share it with the PM over a secure channel, and
4. give each server Sj an empty blacklist BLj = 〈j, 1, 〈⊥〉, ⊥, σ〉 through a secure

channel, where σ is the signature generated as Sig.signx(j||1||1). Why the blacklist
is formatted this way will become clear soon.

At the end of this procedure, the PM stores (khkP , hmkPN) privately, while the NM
stores (nmsk, x, hmkPN) privately and publishes the signature public key y. Also,
each server Sj stores sskj privately.

5.2 User Registration

In this procedure, user Alice interacts with the PM in order to register herself to the
NYMBLE system for linkability window k. Alice obtains a pseudonym from the PM
upon a successful termination of such an interaction. The communication channel be-
tween them is confidential and PM-authenticated.

To register, Alice authenticates herself as a user with identity id to the PM by
demonstrating her control over some resource(s) as discussed, after which the PM
computes pnym ← HkhkP (id, k) and macPN ← HMAChmkNP

(pnym, k), and returns
〈pnym, macPN 〉 to Alice, who stores it privately.

5.3 Acquisition of Nymble Tickets

In order for Alice to authenticate to any server Sj during any linkability window Wk,
she must present a nymble ticket to the server. The following describes how she can
obtain a credential from the NM containing such tickets. The communication channel
is anonymous (e.g., through Tor), confidential and NM-authenticated.

Alice sends her 〈pnym, macPN 〉 to the NM, after which the NM:

1. asserts that macPN = HMAChmkNP
(pnym, k),

2. computes nymbleTKT� ← NymbleTktGennmsk (pnym, j, k, �), for � = 1 to L, and
3. returns cred as 〈seed, nymbleTKT1, nymbleTKT2, . . . , nymbleTKTL〉, where

seed = HkhkN
(pnym, j, k) is the seed used within NymbleTktGen.

Alice may acquire credentials for different servers and different linkability windows
at any time. She stores these credentials locally before she needs them.

Nymble: Anonymous IP-Address Blocking 123

Efficiency. This protocol has a timing complexity of O(L).4 All the computations are
quick symmetric operations—there are two cryptographic hashes, two HMACs and one
symmetric encryption per loop-iteration A credential is of size O(L).

5.4 Request for Services

At a high level, a user Alice presents to server Bob the nymble ticket for the current
time period. As nymble tickets are unlinkable until servers complain against them (and
thereby blacklisting the corresponding user or IP address), Alice must check whether
she is on Bob’s blacklist, and verify its integrity and freshness. If Alice decides to
proceed, she presents her nymble ticket to Bob, and Bob verifies that the nymble ticket
is not on his blacklist. Bob also retains the ticket in case he wants to later complain
against the current access. For example, Wikipedia might detect a fraudulent posting
several hours after it has been made. The nymble ticket associated with that request can
be used to blacklist future accesses by that user.

Each server in the system maintains two data structures, the blacklist BL and the
linking-list LL, to handle blacklisting-related mechanisms to be described below. BL is
in the form of 〈j, k, 〈entry1, . . . , entryv〉, digest, σ〉, where each entry entrym =
〈m, nymbleTKTm, Tm〉. LL is a list of 〈tm, tdrm, nymblem〉 entries.

The following describes in detail the protocol, during which Alice wants to access the
service provided by server Bob (Sj) at time period T� during linkability window Wk.
She will need to make use of seed and nymbleTKT� in cred, which is the credential
she obtained from the NM earlier for accessing Bob’s service within window Wk. The
communication channel between Alice and the NM is NM-authenticated and anony-
mous (through Tor), while that between Alice and Bob is secure, server-authenticated
and anonymous (through Tor).

1. (Blacklist Request.) Upon receiving Alice’s request, Bob returns to Alice his cur-
rent blacklist BL, where BL = 〈·, ·, 〈entry1, . . . , entryv〉, ·, σ〉, each entrym =
〈m, nymbleTKTm, Tm〉 and each nymbleTKTm = 〈·, ·, ·, nymblem, ·, ·, ·〉.5 As de-
scribed earlier, each entry corresponds to a blacklisted user, where nymbleTKTm

was the nymble ticket used by that user in time period Tm.
2. (Version-number Request.) Upon receiving Alice’s request, the NM returns vj , the

current version number of Bob’s blacklist recorded by the NM.
3. (Blacklist Inspection.) Alice terminates immediately as failure if:

• Sig.Verifyy(j||k||vj ||h(. . . h(h(entry1)||entry2). . .||entryv),σ)=invalid,6

i.e., the blacklist is not authentic or not intact, or

4 A naı̈ve implementation would involve a two-level for-loop with O(L2) complexity at the
NM. However, such a loop can be trivially collapsed into single-level, with O(L) complexity
instead.

5 If Bob doesn’t want to use the NYMBLE system for this request, he may skip the rest of the
protocol and start serving (or denying) Alice immediately.

6 By remembering an older digest if Alice has accessed Bob earlier within the same window, Alice
can instead compute only part of the recursive hash above.

124 P.C. Johnson et al.

• g(f (Tm)(seed)) = nymblem for some m ∈ {1, . . . , v},7 i.e., Alice has been
blacklisted.

Otherwise she sends nymbleTKT� = 〈·, ·, ·, nymble, ·, ·, ·〉 to Bob.
4. (Ticket Inspection.) Bob returns failure if:

• ServerVerifysskj
(k, �, nymbleTKT) = invalid, i.e., the ticket is invalid, or

• nymble appears in his linking-list LL, i.e. the connecting user has already been
blacklisted.

Otherwise Bob grants Alice’s request for service and starts serving Alice. Bob
records nymbleTKT� along with appropriate access log for potentially complain-
ing about that connection in the future.

Efficiency. Recall that v is the size of Bob’s blacklist. Blacklist integrity checking is of
O(v) in time. Again, all cryptographic operations in each loop-iteration are symmetric
and there is only one digital verification at the end, independent of v. Checking if being
linked has a time complexity of O(vL) at the user in the worst case, but all computations
involved are simple hashes. Also, one could trade off space to make it O(v) instead.
Time complexity of nymble matching at the server is linear in the size of the Linking-
list using linear search. But efficient data structures exist which can make these steps
logarithmic or even constant (e.g., using hash tables).

5.5 Complaining

By presenting to the NM the nymble ticket associated with an access in which Bob
thinks the user misbehaved, Bob obtains a linking token that will allow him to link
all future nymble tickets for that user.8 The following enumerates the protocol, during
which server Bob (Sj) complains about nymbleTKT. The communication between Bob
and the NM is conducted over a secure channel. Let the time of complaint be at time
period T� during linkability window Wk, where � < L, i.e. the complaint is not during
the last period of a linkability-window.

1. (Complaining.) Bob sends to the NM the nymble ticket nymbleTKT=〈·, ·, �′,·, ·,·, ·〉
he wants to complain about and 〈digest, σ〉 from his current blacklist BL.

2. (Complaint Validation.) The NM rejects a complaint if
• NMVerifynmsk(j, k, �′, nymbleTKT) = invalid, i.e., the ticket is invalid, or
• Sig.verifyy(j||k||vj ||digest, σ) = invalid, where vj is the version number

of Bob’s blacklist recorded by NM, i.e. the (digest of) Bob’s blacklist is not
authentic, intact or fresh.

The NM proceeds otherwise.
3. (Linking-token Issuing.) The NM computes the following:

• linkingTKN ← LinkingTknExtnmsk (j, k, � + 1, nymbleTKT),

7 This step may be sped up by trading off space by storing the original nymble tickets issued in
the user’s credential, making this step a simple lookup.

8 Here “future” means starting from the next time period, rather than the same period immedi-
ately after the complaint. This prevents race conditions such as when a user has inspected that
she is not blacklisted by Bob and is about to present her nymble ticket, but in the meantime
Bob obtains a linking-token for the current time period.

Nymble: Anonymous IP-Address Blocking 125

• entry′ ← (vj + 1, nymbleTKT, �), digest′ ← h(digest||entry′) and then
σ′ ← Sig.signx(j||k||vj + 1||digest′).

The NM increments vj by 1 and returns 〈linkingTKN, entry′, digest′, σ′〉 to
Bob.

4. (List Update.) Bob updates his blacklist BL and linking-list LL as follows:
• In BL, Bob increments v by 1, inserts entry′ as the last entry, and updates σ to

σ′ and digest to digest′.
• In LL, Bob appends a new entry 〈�+1, tdr, nymble〉, where tdr is the trapdoor

in linkingTKN and nymble ← g(tdr).

Efficiency. The NM’s timing complexity is O(L + v). The O(L) is due to a call
to LinkingTknExt, which involves only hashing or HMAC operations. Verifying if a
linking token has already been issued for the user involves O(v) symmetric decryp-
tion operations. Signing one digital signature is the only asymmetric cryptographic
operation.

5.6 Update

Misbehavior is forgiven every time the system enters a new linkability window. Users
who misbehaved previously can then connect to websites anonymously until they mis-
behave and are complained against again. The nymble tickets, linking tokens, and
pseudonyms that are specific to one linkability window become useless when the sys-
tem enters a new window. Consequently, servers empty their blacklists and linking-lists
while NM resets all version numbers to zero at the end of every linkability window.
Moreover, the NM also issues empty blacklists to the servers in the same way as in the
System Setup procedure.

At the end of each time period T�′ that is not the last one in a linkability window,
each server updates its linking-list LL by replacing every entry 〈�, tdr�, nymble�〉 such
that � = �′ with the entry 〈� + 1, f(tdr�), g(f(tdr�))〉. Only hashing is required to
accomplish this and the number of hash operations involved is two times the size of LL.

6 Evaluation

We chose to implement our system using PHP because of its popularity for interactive
web sites (including MediaWiki, the software behind Wikipedia). PHP contains both
built-in cryptographic primitives (e.g., SHA-1 hashing) as well as an interface to the
OpenSSL cryptographic library; we used both as appropriate to maximize performance.
Additionally, we chose to use a relational database to store blacklists and blacklist ver-
sions because the interface is convenient in PHP and database servers are generally
available in the environments in which we envision the Nymble system being used.

We picked SHA-256 [21] for collision-resistant hash functions f , g and h; HMAC-
SHA-1 [23] with 160-bit keys for both keyed hash function H and keyed-hash message
authentication code HMAC; AES-256 in OFB mode with block size of 32 bytes [22]
for symmetric encryption Enc; and 1024-bit RSA [20] for digital signature Sig. We
chose RSA over DSA for digital signatures because of its higher signature verification
speed—in our system, signature verification occurs more often than signing.

126 P.C. Johnson et al.

Our implementation consists of separate modules to be deployed to the Pseudonym
Manager, the Nymble Manager, and servers, as well as common modules for database
access and cryptographic operations. Orthogonal to the correctness of the system, we
felt deployability was also an important goal, and to that end we attempted to minimize
modifications required to “Nymble-protect” existing applications.

Applications wishing to use our system include a single PHP file defining
two functions: nymbletkt is required(ip) and nymbletkt is valid
(nymbletkt). The former determines whether an operation from a particular IP ad-
dress requires a nymble ticket; the second determines whether the supplied nymble
ticket is valid for the current time period. Hence the only modifications necessary are to
supply a nymble ticket input field if it is required and to verify the nymble ticket when
it is submitted.

To test the system, a single machine acted as Pseudonym Manager, Nymble Man-
ager, and server, running PHP 5.1.6, PostgreSQL 8.1, and Apache 2.0.55, atop a default
install of Ubuntu 6.10 and Linux 2.6.17 with SMP enabled. The machine itself was an
Intel Core 2 Duo 6300 (2 cores at 1.86 GHz each) and 1 GB memory. Clients of various
hardware configurations accessed the server via the local network.

Table 1 shows the speed of operations important to both end-users and server admin-
istrators evaluating the Nymble system. Experiments were run 50 times and the results
averaged. The all-ticket credentials generated were for 1-day linkability windows with
5-minute time periods, thus consisting of 288 nymble tickets. We also measured per-
formance with single-ticket credentials containing the ticket for only the time period
in which access to a service was requested. Single-ticket credentials are much more
efficient to generate, but the NM learns all the time periods (as opposed to only the
first time period) when connections are made by the pseudonymous users. The nymble
ticket verification step is the added overhead required during a single user action, visible
to both the server and the client. The linking token generation is the operation carried
out by NM when a server complains. Every time period, each server must iterate every
entry in its blacklist; our measurement reflects the time required for a single server to
iterate 100 entries.

We believe the all-ticket credential generation time of 224ms is reasonable for a
network like Tor, especially since nymble tickets will be needed only for restricted
actions such as edits on Wikipedia—latest data indicate that about two edits per second
to Wikipedia’s English pages.9 We expect much fewer edits to be made via Tor. If all-
ticket credential generation proves to be a bottleneck, the NM can issue single-ticket
credentials to drastically reduce the load. We expect the measured time of 1.1ms for
generating single-ticket credentials to be more than sufficient.

We have implemented a Firefox extension that automatically obtains a pseudonym
from the PM, obtains a credential for a server when needed, verifies the server’s blacklist,
chooses the correct nymble ticket for the current time period, and inserts it into an HTML
form every time the user wishes to traverse a protected page. We assume that the NM is the
arbiter of time, and the user and servers can obtain the current time period and linkability
window from the NM. For example, when a user obtains the current version number for
a particular website’s blacklist, the user also learns the current time period.

9 http://stats.wikimedia.org/EN/PlotsPngDatabaseEdits.htm

Nymble: Anonymous IP-Address Blocking 127

Table 1. Timing measurements

Operation Executed by Time
All-ticket credential generation (288 nymbleTKTs) NM 224 ms
Single-ticket credential generation (1 nymbleTKT) NM 1.1 ms
Nymble ticket verification (Verify) Server 1 ms
Linking token generation (LinkingTknExt) NM 15 ms
Blacklist update Server 8 ms

Finally, we emphasize the NYMBLE system also scales well in terms of space com-
plexities. Credentials that users store are of size 20 + 148L bytes each, or 42KB when
L = 288. The blacklist has a size of 168 + 152v bytes, where v is the number of users
blacklisted by the server during the current linkability window. Most importantly, the
amount of data the NM has to maintain is minimal, namely only one 32-bit integer per
registered server for storing the server’s current version number.

7 Discussion

IP-address blocking. As described in Section 3, users demonstrate control over an IP
address by connecting to the PM directly. Since this connection is made without Tor,
some users may object to the temporary loss of anonymity. It is important to provide
users with an accurate portrayal of the associated risks (and benefits) before using our
system.

There are some inherent limitations to using IP addresses as the scarce resource. If
a user can obtain multiple IP addresses she can circumvent nymble-based blocking and
continue to misbehave. We point out, however, that this problem exists in the absence
of anonymizing networks as well, and the user would be able to circumvent regular IP-
address based blocking using multiple IP addresses. Some servers alleviate this problem
with subnet-based IP blocking, and while it is possible to modify our system to sup-
port subnet-blocking, new privacy challenges emerge; a more thorough description of
subnet-blocking is left for future work. Another limitation is that a user Alice may ac-
quire nymbles for a particular IP address and then use them at a later time (to misbehave)
within the linkability window even after she has relinquished control over that IP address.
This type of attack allows Alice a little more flexibility—with regular IP-based blocking,
Alice would have to perform misbehaviors while in control of the various IP addresses.

Some other resource may be used to acquire pseudonyms, but we believe IP-address
blocking is still the most pragmatic approach in today’s Internet. Our approach closely
mimics IP-address blocking that many servers on the Internet rely on routinely. Some
may be concerned that users can misbehave through Tor after their IP address has been
blocked, effectively allowing them to misbehave twice before being blocked (once us-
ing regular IP-address blocking, and once using Nymble). We argue, however, that
servers concerned about this problem could require Nymble-based authentication from
all users, whether or not they connect through an anonymizing network.

Time periods and linkability windows. Since nymbles are associated with time periods,
it is desirable to keep the duration T of time periods small. On the other hand, larger

128 P.C. Johnson et al.

values of T can be used to limit the rate of anonymous connections by a user. Since
users remain blacklisted for the remainder of the linkability window after a complaint,
it is desirable to keep the duration of the linkability window L long enough to curtail
the malicious user’s activities, but not so long as to punish that user (or honest users
to whom the IP address may get reassigned) indefinitely. In our example we suggested
T = 5 min and L = 1 day, but further experimentation is needed to determine reason-
able values for these parameters.

Server-specific linkability windows. An enhancement would be to provide support to
vary T and L for different servers. As described, our system does not support vary-
ing linkability windows, but does support varying time periods. This is because the
PM is not aware of the server to which the user wishes to connect, yet it must issue
pseudonyms specific to a linkability window. In our system, therefore, the linkability
window must be fixed across all servers. Supporting varying time periods is easy, and
the NM can be modified to issue the appropriate set of nymble tickets based on the
servers’ parameters.

8 Conclusion

We present a system that allows websites to selectively block users of anonymizing
networks such as Tor. Using our system, websites can blacklist users without knowing
their IP addresses. Users not on the blacklist enjoy anonymity, while blacklisted users
are blocked from making future accesses. Furthermore, blacklisted users’ previous con-
nections remain anonymous. Since websites are free to blacklist anonymous users of
their choice, and since users are notified of their blacklisting status, our system avoids
the complications associated with judging “misbehavior.” We believe that these prop-
erties will enhance the acceptability of anonymizing networks such as Tor by enabling
websites to selectively block certain users instead of blocking the entire network, all
while allowing the remaining (honest) users to stay anonymous.

Acknowledgments

This paper greatly benefited from discussions with Sergey Bratus, Alexander Iliev, and
Anna Shubina. We also thank Roger Dingledine, Paul Syverson, Parisa Tabriz, Seung
Yi, and the anonymous reviewers for their helpful comments.

References

1. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-
resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp.
255–270. Springer, Heidelberg (2000)

2. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal defini-
tions, simplified requirements, and a construction based on general assumptions. In: Biham,
E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003)

Nymble: Anonymous IP-Address Blocking 129

3. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dynamic
groups. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer,
Heidelberg (2005)

4. Brands, S.: Untraceable off-line cash in wallets with observers (extended abstract). In: Stin-
son, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994)

5. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.: How to
win the clonewars: efficient periodic n-times anonymous authentication. In: Juels, A., Wright,
R.N., De Capitani di Vimercati, S. (eds.) ACM Conference on Computer and Communica-
tions Security, pp. 201–210. ACM Press, New York (2006)

6. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer, R.J.F. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005)

7. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous cre-
dentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

8. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bi-
linear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer,
Heidelberg (2004)

9. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commu-
nications of the ACM 4(2) (1981)

10. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO, pp. 199–203 (1982)

11. Chaum, D.: Showing credentials without identification transfeering signatures between un-
conditionally unlinkable pseudonyms. In: Seberry, J., Pieprzyk, J.P. (eds.) AUSCRYPT 1990.
LNCS, vol. 453, pp. 246–264. Springer, Heidelberg (1990)

12. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

13. Chen, L.: Access with pseudonyms. In: Dawson, E.P., Golić, J.D. (eds.) Cryptography: Policy
and Algorithms. LNCS, vol. 1029, pp. 232–243. Springer, Heidelberg (1996)

14. Damgård, I.: Payment systems and credential mechanisms with provable security against
abuse by individuals. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 328–335.
Springer, Heidelberg (1990)

15. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion Router. In:
Usenix Security Symposium, pp. 303–320 (2004)

16. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

17. Holt, J.E., Seamons, K.E.: Nym: Practical pseudonymity for anonymous networks. Internet
Security Research Lab Technical Report 2006-4, Brigham Young University (June 2006)

18. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L.
(eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)

19. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys, H.M.,
Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000)

20. NIST. FIPS 186-2: Digital signature standard (DSS). Technical report, National Institute of
Standards and Technology (NIST) (2000),
http://csrc.nist.gov/publications/fips/fips186-2/
fips186-2-change1.pdf

21. NIST. FIPS 180-2: Secure hash standard (SHS). Technical report, National Institute of Stan-
dards and Technology (NIST) (2001), http://csrc.nist.gov/publications/
fips/fips180-2/fips180-2withchangenotice.pdf

http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

130 P.C. Johnson et al.

22. NIST. FIPS 197: Announcing the advanced encryption standard (AES). Technical report,
National Institute of Standards and Technology (NIST) (2001),
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

23. NIST. FIPS 198: The keyed-hash message authentication code (HMAC). Technical report,
National Institute of Standards and Technology (NIST) (2002),
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

24. Ohkubo, M., Suzuki, K., Kinoshita, S.: Cryptographic approach to “privacy-friendly” tags.
In: RFID Privacy Workshop, MIT, MA, USA (November 2003)

25. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for Web Transactions. ACM Transactions on
Information and System Security 1(1), 66–92 (1998)

26. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

27. Syverson, P.F., Stubblebine, S.G., Goldschlag, D.M.: Unlinkable serial transactions. In:
Hirschfeld, R. (ed.) FC 1997. LNCS, vol. 1318, pp. 39–56. Springer, Heidelberg (1997)

28. Teranishi, I., Furukawa, J., Sako, K.: k-times anonymous authentication (extended abstract).
In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 308–322. Springer, Heidelberg
(2004)

29. Tsang, P.P., Kapadia, A., Smith, S.W.: Anonymous IP-address blocking in tor with trusted
computing (work-in-progress). In: The Second Workshop on Advances in Trusted Comput-
ing (WATC ’06 Fall) (November 2006)

30. von Ahn, L., Bortz, A., Hopper, N.J., O’Neill, K.: Selectively traceable anonymity. In:
Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 208–222. Springer, Heidel-
berg (2006)

A Security Model, Proofs and Analysis

A.1 Security Model for Nymble-Auth

Correctness means the system functions as intended when all entities are honest.
Unforgeability guarantees that valid nymble tickets can only be obtained from NM.
Backward Anonymity makes sure nymble tickets are anonymous without an associated
trapdoor and remain anonymous even with an associated trapdoor as long as that trap-
door is meant for a time period later than the nymble tickets. Finally, Uncircumventable
Forward Linkability says that valid nymble tickets are always linked to an associated
trapdoor meant for a time prior to those nymble tickets.

Definition 1 (Correctness). A Nymble-Auth construction is correct if it has Verifica-
tion Correctness and Linking Correctness, defined as follows:

• (Verification Correctness.) If all entities in the system are honest (i.e. they exe-
cute the algorithms according to the system specification), then ServerVerify re-
turns 1 (indicating valid) on any nymbleTKT output by NymbleTktGen, with
overwhelming probability.

• (Linking Correctness.) If all entities in the system are honest, then Link returns
linked on any linkingTKN generated by LinkingTknExt(i, j, k, �) and any
nymbleTKT generated by NymbleTktGen(i′, j′, k′, �′) if and only if (i, j, k) =
(i′, j′, k′) and j ≤ j′, with overwhelming probability. 	

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

Nymble: Anonymous IP-Address Blocking 131

We describe three oracles before defining various security games. The existence of the
oracles models the adversary’s capability in the real world of learning as much infor-
mation about the nymbles and trapdoors as possible by probing the system. They are:

• OTKT (i, j, k, �), or the Ticket Oracle. It returns nymbleTKTi,j,k,�, the nymble
ticket as output by the NymbleTktGen algorithm on input (i, j, k, �),

• OTKN (nymbleTKT, �), or the Token Oracle. It returns the linking token
linkingTKNi,j,k,� as output by the LinkingTknExt algorithm on input
(nymbleTKT, �), and

• OK(j), or the Server Corruption Oracle. It returns kNSj , the symmetric key of
server Si as output by the Setup algorithm.

Definition 2 (Unforgeability). A Nymble-Auth construction is Unforgeable if no
Probabilistic Poly-Time (PPT) adversary A can win the following game against the
Challenger C with non-negligible probability:

1. (Setup Phase.) C executes Setup(1λ) on a sufficiently large λ, keeps nmsk secret
and gives nmpk to A.

2. (Probing Phase.) A may arbitrarily and adaptively query three oracles OTKN

(nymbleTKT, �), OTKT (i, j, k, �) and OK(j).
3. (End Game Phase.) A returns 〈j∗, k∗�∗, nymbleTKT∗〉. A wins the game if

nymbleTKT∗ is not an output of a previous OTKT (·, ·, ·, ·) query, A did not query
OK(j∗) and VerifykNSj∗

(j∗, k∗, �∗, nymbleTKT∗) = 1. 	

That is, A should not be able to forge a valid nymbleTKT without the NM’s secret
parameters.

Definition 3 (Backward Anonymity). A Nymble-Auth construction has Backward
Anonymity if no PPT adversary A can win the following game against the Challenger C
with probability non-negligibly greater than 1/2:

1. (Setup Phase.) C executes Setup on a sufficiently large security parameter, keeps
nmsk secret, and gives nmpk to A.

2. (Probing Phase I.) A may arbitrarily and adaptively query the three oracles
OTKT (·, ·, ·, ·), OTKN (·, ·) and OK(·).

3. (Challenge Phase.) A decides on positive integers i∗0, i
∗
1, j

∗, k∗, �∗ such that the
following conditions hold:

• For all queries OTKT (i, j, k, �), for each b ∈ {0, 1} we have that (i, j, k, �) �=
(i∗b , j

∗, k∗, �∗), i.e., Ahas not already obtained any of the challengenymbleTKTs
from OTKT .

• For all queries OTKN (·, �), � > �∗, i.e. all trapdoors obtained are of time
periods greater than the challenge nymble tickets.

• For each b ∈ {0, 1}, for all queries OTKT (i1, j1, k1, �1) where (i1, j1, k1) =
(i∗b , j

∗, k∗) and queries OTKN (nymbleTKT, �) where nymbleTKT is the output
of some query OTKT (i2, j2, k2, �2) such that (i2, j2, k2) = (i∗b , j

∗, k∗), �1 <
�, i.e. the adversary is not allowed to query for a linking token and a nymble

132 P.C. Johnson et al.

ticket such that the trapdoor within the linking token can be used to link the
nymble ticket.10

Then C flips a fair coin b∗ ∈R {0, 1} and returns A with

〈nymbleTKTib∗ ,j∗,k∗�∗ , nymbleTKTi
b̃∗ ,j∗,k∗,�∗〉,

where b̃∗ is the negation of b∗.
4. (Probing Phase II.) A may arbitrarily and adaptively query the three oracles, except

that the conditions above must still hold.
5. (End Game Phase.) A returns guess b̂ ∈ {0, 1} on b∗. A wins if b̂ = b∗. 	

That is, A should not be able to link nymbleTKTs without the appropriate linkingTKN.

Definition 4 (Uncircumventable Forward Linkability). A Nymble-Auth construc-
tion has Uncircumventable Forward Linkability if no PPT adversary can win the fol-
lowing game she plays against the Challenger C with non-negligible probability:

1. (Setup Phase.) C executes Setup on a sufficiently large security parameter, keeps
nmsk secret and gives nmpk to A.

2. (Probing Phase.) A may arbitrarily and adaptively query the three oracles
OTKN (i, j, k, �), OTKT (i, j, k, �) and OK(j), where i, j, k, � ≥ 1.

3. (End Game Phase.) A returns 〈j∗, k∗, �∗0, �∗1, nymbleTKT
∗
0, nymbleTKT

∗
1, �

∗〉. A
wins the game if Verify(j∗, k∗, �∗b , nymbleTKT

∗
b) = 1 for b ∈ {0, 1}, �∗0 ≤ �∗ ≤ �∗1,

A did not query OK(·) on j∗ and

Link(nymble∗1, TrapdoorExt(nymble∗0, �
∗)) = 0.

	

That is, A cannot obtain two nymbleTKTs for any server such that they are unlinkable,
but should have otherwise been linkable, with the appropriate linkingTKN.

A.2 Security Proofs for Nymble-Auth

Proof (Theorem 1). (Sketch.) We prove the theorem by showing our Nymble-Auth con-
struction is correct, unforgeable, backward anonymous and uncircumventably forward
linkable. Due to page limitation, we gives only proof sketches here.

CORRECTNESS. Correctness of Nymble-Auth is straightforward. Namely, verification
correctness is implied by the correctness of the HMAC HMAC. Linking correctness is
implied by the determinism and collision-resistance of hash functions f, g.

UNFORGEABILITY. Our Nymble-Auth construction has unforgeability due to the se-
curity of HMAC, which guarantees that without the knowledge of the associated key,
no PPT adversary can produce a valid MAC on any input string, even if the adversary
learns arbitrary input-output HMAC pairs. As a result, any PPT in our construction is

10 This restriction is justified because we will use Nymble-Auth in such a way that a user will
never present a nymble ticket again to a server once the server has acquired a linking token for
that user.

Nymble: Anonymous IP-Address Blocking 133

allowed to query the oracle for arbitrary nymble tickets and yet is unable to produce a
new one with a correct MAC on it.

BACKWARD ANONYMITY. Our Nymble-Auth construction has backward anonymity
due to the security of the symmetric encryption Enc and the collision-resistance of the
hash functions f and g. The only pieces within a nymble ticket that are correlated to
user identities are the nymble and the encrypted trapdoor. The security of Enc guaran-
tees that ciphertexts leak no information about their underlying plaintexts to any PPT
adversary, so that the encrypted trapdoor is computationally uncorrelated to the under-
lying trapdoor and thus the identity of the user to which the nymble ticket belongs. The
nymble is the output of g(·) on its associated trapdoor, which is in turn the output af-
ter a series of application of f(·) on a seed dependent on the user identity. Under the
Random Oracle Model, hash function outputs are random (but consistent), therefore
the nymbles are distinguishable from random strings in the view of an adversary who
does not have any trapdoor for the user-server-window tuple to which nymbles in the
challenge nymble tickets are associated.

Knowing one or more associated trapdoors does not help the adversary in winning
the game as the trapdoors are also indistinguishable from random values. This is the
case because all except the first linking token returned by OTKN contain a true random
value as the trapdoor. The first linking token contains a genuine trapdoor, but it is in-
distinguishable from a random value because f(·) and g(·) are random oracles and the
adversary is not allowed to query OTKT for a nymble ticket and query OTKN for a
linking token such that the time period of the nymble ticket is greater than or equal to
the time period of the linking token.

UNCIRCUMVENTABLE FORWARD LINKABILITY. Our Nymble-Auth construction has
Uncircumventable Forward Linkability as a consequence of unforgeability and linking
correctness. Specifically, assume there exists an PPT adversary who can break uncir-
cumventable forward linkability; then the two nymble tickets she output at the End
Game phase must be such that they are query outputs of the nymble ticket oracle, be-
cause otherwise the adversary would have broken the unforgeability of Nymble-Auth,
which leads to a contradiction. Now since the two output nymble tickets are gener-
ated according to specification, the linking algorithm will return linked on any trap-
door extracted from the nymble ticket earlier in time period, which again leads to a
contradiction. 	

Improving Efficiency and Simplicity of Tor Circuit

Establishment and Hidden Services

Lasse Øverlier1,2 and Paul Syverson3

1 Norwegian Defence Research Establishment, P.B. 25, 2027 Kjeller, Norway
lasse.overlier@ffi.no
http://www.ffi.no/

2 Gjøvik University College, P.B. 191, 2802 Gjøvik, Norway
lasse@hig.no

http://www.hig.no/
3 Center for High Assurance Computer Systems

Naval Research Laboratory Code 5540, Washington, DC 20375
syverson@itd.nrl.navy.mil

http://chacs.nrl.navy.mil, http://www.onion-router.net

Abstract. In this paper we demonstrate how to reduce the overhead
and delay of circuit establishment in the Tor anonymizing network by
using predistributed Diffie-Hellman values. We eliminate the use of RSA
encryption and decryption from circuit setup, and we reduce the num-
ber of DH exponentiations vs. the current Tor circuit setup protocol
while maintaining immediate forward secrecy. We also describe savings
that can be obtained by precomputing during idle cycles values that can
be determined before the protocol starts. We introduce the distinction
of eventual vs. immediate forward secrecy and present protocols that
illustrate the distinction. These protocols are even more efficient in com-
munication and computation than the one we primarily propose, but
they provide only eventual forward secrecy. We describe how to reduce
the overhead and the complexity of hidden server connections by using
our DH-values to implement valet nodes and eliminate the need for ren-
dezvous points as they exist today. We also discuss the security of the
new elements and an analysis of efficiency improvements.

1 Introduction

Since its public deployment in October 2003, the Tor [7] anonymizing network
has been a huge success. It currently consists of around 900 server nodes (onion
routers) scattered throughout all inhabited continents. With a weekly estimated
200.000+ users, and no down-time since launch, it is also the largest distributed
anonymizing network in use. There are other anonymizing networks: JAP [2] and
Freenet [5] are the most well-known implementations. In addition there exist
several commercial services offering anonymity through anonymizing proxies,
e.g., Relakks [21] and Anonymizer [1].

In this paper we describe new protocols for establishing circuits through Tor
and for accessing hidden services over Tor that are substantially more efficient

N. Borisov and P. Golle (Eds.): PET 2007, LNCS 4776, pp. 134–152, 2007.

Improving Efficiency and Simplicity of Tor Circuit Establishment 135

than those currently deployed. All the Tor modifications described in the paper
were motivated by our intent to simplify and reduce the overhead of using hidden
services. However, as with the introduction of entry guards motivated by our
previous analysis of hidden services [17], we discovered that much of our work
applies to Tor circuits in general, not just those for accessing hidden services.
For clarity of exposition, we have thus separated our presentation into protocol
changes that apply to all Tor circuits and protocol changes that apply only to
hidden services.

Our generally applicable protocols provide (1) reduced overhead and greater
efficiency for the Tor network overall, (2) improved overhead and efficiency for
Tor client machines, (3) examples to refine and explicate the concept of forward
secrecy, and (4) most significantly, reduced load on individual server nodes. The
basic idea of onion routing was to make low-latency anonymous communication
feasible by adopting a circuit approach and limiting expensive public-key crypto
use to circuit setup. This has been largely successful and, for most circuits over
Tor, symmetric-key crypto has always dominated CPU consumption. Still, as
the network grew past 100 nodes in Spring 2005 it became necessary to modify
Tor to handle the public-key overhead by shifting the default rotation interval
for used-circuits from one minute to ten minutes. Because Tor is a volunteer
network, many of those who would like to contribute a node can only offer either
unused spare machines—which are often older, slower, and have less memory—
or machines that have other jobs to do, thus that can only spare computational
resources for Tor if the overhead is not too great. Therefore, our techniques
effectively lower the barrier to becoming a Tor node in significant ways and so
encourage the network to grow.

In addition to the reduced computational requirements for circuit establish-
ment, we describe reductions in message flows, both for basic circuit establish-
ment and to establish circuits for communication with hidden services, where
we use the new circuit construction and the valet nodes [18] extension to hidden
services to make the design simpler. The currently implemented hidden service
design [7] is complex and involves the building of four circuits collectively com-
prised of as many as twelve Tor server nodes—not including the service lookup,
the client or the hidden service node. The latency of connecting to hidden services
and interacting with them and the network load resulting from this complexity
may have contributed to the relatively low number of hidden services deployed to
date. There is also the effect simply that perceived complexity can imply reduced
expectation of security and performance. However, the lower priority placed on
maintaining and improving hidden services by the Tor developers, (not in gen-
eral but simply relative to other aspects of Tor) no doubt also plays a role, as
does the less immediate need for hidden services for the typical Tor user. Our
protocol eliminates the rendezvous server as it is used today, and we reduce the
number of involved nodes from twelve to six and the number of circuits from
four to two in the best case scenario. In the worst case, there are three circuits
comprised of nine nodes.

136 L. Øverlier and P. Syverson

In section 2 we give a short overview of the history of onion routing and
circuit telescoping. In section 3 we present new methods of setting up anonymous
tunnels, both as a proposal for reducing Tor overhead and to explicate forward
secrecy, and in section 4 we look at some new methods of performing hidden
service connections. Section 5 discusses anonymity, security, and efficiency of
the new designs, and section 6 concludes.

2 Background

Onion routing is an approach to low-latency anonymous communication on pub-
lic networks. The first two generations of onion routing used data structures
comprised of layers of public-key encryptions to establish circuits and to dis-
tribute session keys to nodes along the circuit. The session keys were used, also
in a layered fashion, to encrypt and decrypt the data traveling back and forth
between the circuit initiator and responder. In the current generation of onion
routing, Tor, circuits are established by Diffie-Hellman (DH) key exchange with
each node in the circuit, each exchange being tunneled through the already es-
tablished circuit and encrypted with established session keys. This technique
has been called “telescoping” since its introduction in the Freedom Network [3].
Using DH provides (perfect)1 forward secrecy (FS), meaning that, because keys
are formed from exchanged messages rather than sent in encrypted form, once
the session is over and the keys discarded, an adversary who stored all previous
communication cannot decrypt it by somehow later obtaining a private key used
to encrypt a session key.

Interestingly the original onion routing system designers considered but aban-
doned in the spring of 1996 [11] the option of using public Diffie-Hellman values
to achieve efficiency gains in computation. Our intended design was to include
the public DH-values from the originator inside the layers of circuit building
onions, which were used in the first few generations of onion routing designs,
and then to combine these with public DH keys (that we assume are DH-values
used for generating keys). This is very similar to one of the protocols described
below. Our focus was not on FS but simply to be more computationally efficient.
We were certainly aware of FS and intentionally chose a protocol for securing
links between onion routers that provided it, but we only pursued it with respect
to outside attackers rather than against compromised network nodes as well. The
idea of using DH for basic circuit building was simply another dropped design
idea until work began on the Tor design, when it was picked up for the forward
secrecy it provided and for freedom from the need to store onions against replay.
The first description [10,19] and implementation of onion routing uses RSA pub-
lic keys for distributing circuit session keys and DH-established link encryption
between the server nodes. The current version of onion routing, Tor, uses both
a DH key exchange and an RSA encryption/decryption for each step on the
1 Forward secrecy was called ‘perfect forward secrecy’ when it was introduced and

often still is. We will follow the convention common in cryptologic literature of
referring to it simply as ‘forward secrecy’.

Improving Efficiency and Simplicity of Tor Circuit Establishment 137

anonymizing tunnel setup. The computational advantages of using DH that we
contemplated in 1996 have lain dormant until now.

Hidden services [7,17] have also been a part of onion routing since 1997 [11]
and in their current form have been deployed on the public Tor network since
2004. They offer resistance to distributed DoS and other types of location ori-
ented attacks. Hidden services are hidden by the network in the sense that their
network locations cannot be found through access to the service, and this hid-
ing makes the services suitable for censorship resistance, such as for dissidents
or journalists publishing information accessible from anywhere. These location
hidden services have been shown to have potential vulnerabilities [16,17] some
of which have been addressed. Improvements to availability and QoS have been
added [18], although these have also made the protocol even more complex.

In this paper we present various DH-based protocols for more efficient es-
tablishment of circuits in an onion routing network and present both efficiency
improvements and simplifications to the existing hidden services protocol (in
addition to those from our more efficient circuit setup protocols).

3 Circuit-Building Protocol Description

We assume that the functionality of the existing Tor protocol is known to the
reader. Description of Tor circuit setup can be found in [6,7].

3.1 Overview

The central idea of all our protocols is to have certified ephemeral key exchange
values at every server node inside the anonymizing network that the client uses to
generate session keys for use with the nodes. These keys are used for symmetric
encryption inside the created circuits. In this way it is similar to the originally
contemplated use of DH in onion routing a decade ago. In all the protocols
we describe we save computational overhead because there are now about half
as many exponentiations per circuit established when compared to the existing
Tor circuit building protocol. We present four protocols. The first provides the
building blocks on which the others are based. We then consider issues of forward
secrecy and message replay. We illustrate these via a succession of protocols in
which communications efficiency and to some extent computational efficiency is
in each following protocol traded off for improvements in forward secrecy or re-
play prevention, culminating in a protocol with the computational improvements
we have already noted but that provides immediate forward secrecy. These ideas
will be explained below.

3.2 Protocol Description

Our new protocols use an ElGamal key agreement [8], which is also widely known
as a half-certified Diffie-Hellman key exchange [15], to initialize the keys along
the circuit. Construction of DH keys is computationally expensive, so it should

138 L. Øverlier and P. Syverson

happen as infrequently as possible. But new DH keys enable forward secrecy
when both parameters are discarded, so it should happen as often as possible. But
rotation can also require an update of the public (or user) accessible information,
so it should happen as infrequently as possible. Our presentation of the various
protocols below is in part designed to explore these apparently conflicting needs
and to illustrate ways to either make appropriate tradeoffs or to satisfy both
needs at once.

Unlike the current Tor network, no RSA key is used to encrypt client-server or
server-server communication. RSA keys are used only for the node to sign public
information about itself. Thus, server initialization and publishing of node infor-
mation is completed as in the current Tor implementation. (1) Every server node
has a permanent server key pair PSpub/priv as before. The private key is used for
signing server information, including the public key and all information published
in the directory service. (2) The server creates DH parameters DHx,pub/priv that
are to be used in forming circuits. The public values of are made part of the in-
formation published in the directory service together with the public server key.
These public values need to be updated regularly. Following current practice for
the onion keys (circuit-building RSA keys) in the Tor network, the default is to
have a single server DH key good for one week, with the previous week’s key being
retained and usable to avoid synchronization problems at the time of switching to
a new key. (We could add a list of public-key-exchange values valid in different
periods of time, e.g. one new DH value every day, to the published and signed list
of information about this node. This would permit the servers to have multiple
values with different periods of validity to support both circuit setup and to be
used with valet nodes in the hidden service design. On the other hand, this would
clearly increase the directory overhead of Tor at a time when directory size is seen
as a main cost of running Tor and when Tor developers are looking for ways to
reduce the directory size and frequency of updates.)

3.3 Setting Up the Circuit

There are two main uses of circuit constructions within Tor. (1) Setting up a
standard circuit, for example to reach an exit-node in order to retrieve informa-
tion from outside the anonymizing network. (2) Setting up a circuit to a hidden
service using special setup paths that protect the location of the accessed server
as well as the location of the client. The latter will be described in section 4.

We have in our examples described the plain Diffie-Hellman based ElGamal
key exchange protocol. An implementation could use an ECC (Elliptic Curve
Cryptography) version to reduce overhead in communication and computing
time when deriving the session keys. Besides technical questions, the many
patents in this area would need to be investigated before recommending an
ECC version for Tor use. We will not discuss here the cryptographic differences
or advantages between these key exchange methods.

Plain circuit setup, using circuit setup onions. The client, C, wants to
communicate through nodes X and Y to node Z, and from there to exit the
network to server S, just as in current Tor communication.

Improving Efficiency and Simplicity of Tor Circuit Establishment 139

First the client wants to share an ephemeral encryption key with node X .
Every accessible node has signed and published their global DH-parameters,
DHx,pub, as described above.2 A discussion of the various methods to use for
distributing DH-parameters and public keys will not be addressed in this paper:
see [7,18] for this. Now, when the client wants to establish a communication
channel, it creates its own ephemeral DH value pair for use with each node, e.g.,
DHcx,priv/pub, for communication between C and X . It then sends the public
part to node X together with the additional information encrypted with the
newly constructed key.3

As noted above, this is essentially a half-certified ElGamal key agreement. Now
one can use the client’s contact with the first server node to tunnel information
to the second, and to the third, and so on.

The first protocol uses this new key exchange to set up each extension of the
tunnel quite similarly to the current handshake of Tor, except that we use the
public Diffie-Hellman value for identifying the server node. The connection be-
tween the server node and its public DH value is established via the signature on
node information that the client must verify. (Alternatively it could be possible
to use pairing-based cryptography to set up an identity-based Diffie-Hellman
scheme for circuit building obviating the need for signed certificates [13]. How-
ever, amongst other limitations, existing pairing-based schemes require a trusted
server to generate and distribute private keys to all the server nodes. A thresh-
old system can be used to reduce trust in a single entity for generating and
distributing these keys with a concomitant increase in overhead. We therefore
think it unlikely that any existing pairing-based scheme will be both practical
and adequately trustable for deployment on the public Tor network. Nonethe-
less, the potential advantages of an identity-based scheme are clear. Thus it is a
worthwhile research question to explore applying these schemes to onion routing
networks and similar systems. An identity-based scheme may also be useful for
similar but distinct existing applications or in other contexts.)

The setup packet to X contains

DHcx,pub, {CREATE , IDcx, data}Kcx

and the reply is similar to the current Tor key establishment “CREATED” mes-
sages, except that it can be encrypted with the common key Kxc because the

2 This value is calculated from their private DH-parameter, DHx,pub = gDHx,priv ,
signed and retrieved by C.

3 E.g. in plain Diffie-Hellman the key Kcx is found by using (DHcx,pub)
DHx,priv =

(DHx,pub)
DHcx,priv as key material. Note that this key material is for use only in

one circuit. If C were to build another circuit through X during the lifetime of
DHx,pub, it would use DHx,pub, but would generate a new DHcx,pub. Note also
that Kcx �= (DHcx,pub)

DHx,priv : as is usual cryptographic practice, a key derivation
function (kdf) is needed to produce Kcx from (DHcx,pub)

DHx,priv , and a different
kdf is used for Kcx (for communication from C to X) than the kdf used for Kxc (for
communication from X to C).

140 L. Øverlier and P. Syverson

key is established at both client and node once this setup message is processed.4

The same alteration to original Tor applies for the extension from X to Y when
sent from the client. The result will look something like

{IDcx,EXTEND , DHcy,pub, {CREATE , IDcy, data}Kcy}Kcx (1)

with a reply that uses the new keys Kxc and Kyc
5. Similar extension is done from

Y to Z. We have only described the changes to the protocol. There exist check-
sums and key verification parameters in the current Tor protocol that will fit
easily in the same way in the new protocol. Notice that if we use DHcx,pub/priv =
DHcy,pub/priv �= DHcz,pub/priv or DHcx,pub/priv �= DHcy,pub/priv =DHcz,pub/priv

we save one DH initialization and will still have FS as long as the private value
is discarded after circuit use. The main reason for not having Z’s value equal to
X ’s value is that X and Z should not be able to use the value as an index to
trivially tell if they are a part of the same circuit.

This first protocol will serve as the basic building block for those that follow,
which are all variants on it.

Fig. 1. Circuit setup, second protocol

The second protocol creates the complete circuit by sending a single packet
to the first server node, X , propagating its way through Y to Z, as shown in
Fig. 1. The initial packet sent from C will look something like

DHcx,pub, {cmd, IDcx, Y, DHcy,pub, {cmd, IDcy, Z, DHcz,pub,

{cmd, IDcz, data}Kcz}Kcy}Kcx (2)

The client (and intermediate nodes) will replace (actually “shift left”) the
data and add as much padding as they have removed in order to maintain con-
stant data length when stripping off headers. The data in Expression 2 can be
parameters to the command for the last node of the circuit, e.g. connect to an ex-
ternal service or a simple “SETUP COMPLETE” to let the last node know that
it should send back a “SETUP OK”. The data field will always be followed by
4 Note that since the client contributes only a fresh, ephemeral, and unauthenticated

value in this exchange, any concern about Key Compromise Impersonation attacks
simply do not apply to our protocols [4].

5 Recall Kyc �= Kcy, but they are both derived from equal key exchange material.

Improving Efficiency and Simplicity of Tor Circuit Establishment 141

termination information and random data adequate to keep a constant length.
This is the same technique to hide correlation between onion size and relative
position in a circuit used in the two generations of onion routing that preceded
Tor [10,20].

This general approach of (1) using just DH in exactly this way and (2) aban-
doning RSA for circuit establishment was seriously considered [11] by the devel-
opers of onion routing when moving from the generation 0 to the generation 1
system design, but ultimately RSA encryption in circuit setup has been used in
the code for all three generations of onion routing that have been deployed.

Preventing replay in circuit setup. If someone were to obtain the onion in
Expression 2, he could replay it and cause the exact same circuit to be built
with the exact same keys. He could not read any traffic without breaking three
private and/or session keys. And, he could only replay it for the lifetime of onion
routers’ public DH keys. If any of them were to expire and the corresponding
private keys be discarded, the nodes would not be able to process the circuit. But
during that period, he could build the circuit repeatedly and possibly conduct
traffic attacks based on doing so. That is not possible in the current Tor circuit-
building protocol because each server contributes an ephemeral DH key to the
session keys each time a circuit is built. We now explore how to add this replay
preventability.

Following the structure of the first protocol above, we can have the “CRE-
ATED” message contain a random value generated by X . This can then be
combined with the session-key seed to form a new session key. (In current Tor,
the key material generated by the DH exponentiations would not be used directly
to encrypt messages. Rather a hash of that material with two different known
values is used for two different key derivation functions that produce keys for
encryption in each direction in the circuit. Similar kdfs are used to produce keys
for integrity checks, etc. [6]. As in most publications, our protocol description
glosses over this detail.)

This addition to the handshake can similarly be added to the “CREATED”
messages from Y and Z, resulting in a re-keying of the circuit even as it is being
built. Thus, while the original message from the client to X might be replayed,
subsequent messages through X will be encrypted under a different variant of Kcx.

The third protocol adds this ephemeral feature to the above protocol designs
while reducing the total number of messages and still without requiring any
additional exponentiations over the first protocol.

If we were to simply add this node-generated randomness to the second pro-
tocol above, it would be possible to rekey the circuit with a single flow up and
single flow down the circuit. The full circuit establishment could not be replayed
because of this rekeying. But, it would not prevent replay of the onion and of
the resulting path laying all the way through the circuit. An attacker could still
replay the onion to do traffic analysis of the circuit establishment as long as the
servers’ DH keys remained usable.

The current Tor protocol contains a “CREATE FAST” option for the hand-
shake between the client and the first node. The link between them is already

142 L. Øverlier and P. Syverson

encrypted using TLS (in a DH mode that insures that link encryptions have
forward secrecy). Thus, against a link eavesdropper, there is no advantage to
using a DH key exchange in the Tor handshake. Therefore both the client and
first node simply send each other symmetric key seeds which are combined using
XOR to form the Tor session key between them [6].6

We can use this technique, but extend it slightly to still reduce the number
of ping-pong exchanges used to establish a circuit. The first message from the
client is encrypted only with the TLS encryption of the link. It contains an extend
instruction and a random value from the client to be combined with a random
value contributed by the first node, X , to form their session key. Ignoring the
TLS encryption, it is very similar to the message in Expression 1 with one extra
field and one less layer of encryption.

EXTEND , random valuecx , DHcy,pub, {CREATE , IDcy, data}Kcy

X forwards this (minus the fields random valuecx and EXTEND) to Y . Y
responds with

{IDcy,CREATED , random valueyc , data}Kyc

to which X attaches a random value and returns to the client

IDcx,EXTENDED , random valuexc ,

{IDcy,CREATED , random valueyc , data}Kyc

The client then produces K ′
cx and K ′

xc from the parameters random valuecx

and random valuexc, and the keys K ′
cy and K ′

yc are created from Kcy and
random valueyc. These keys are used by C as session keys to communicate
with X and Y respectively for the remainder of the session. Using the session
keys the client sends an “EXTEND” message to Y , for extending to Z, just as
in the first protocol. The entire sequence of exchanges is depicted in Fig. 2.

We achieve a savings of two messages compared to the current circuit con-
struction by creating an onion from the client to Y as shown in Fig. 2, and
then do an extend from Y to Z as above. The initial handshake with X is now
bundled in the onion sent to Y . And, even if an attacker obtained the onion
despite the TLS encryption on the client-X link, he could replay it for at most
two hops (and only during the time DHy,pub is valid). He cannot rebuild the
entire circuit to the final node because Y will not decrypt the extension request
6 One might even go further and question the need for any encryption at all beyond

the TLS link encryption for communication between the client and the first node.
This would also allow the removal of one ping-pong exchange of handshake messages
while otherwise leaving the protocol intact. We will consider just such a reduction
next, but without eliminating the exchange of keys. The overhead of keeping these
keys is slight, especially if this does not require its own ping-pong of messages, and
it provides consistency with other protocol features, hence flexibility. We will thus
not pursue further in this paper completely removing the Tor session key between
the client and the first node.

Improving Efficiency and Simplicity of Tor Circuit Establishment 143

unless it is encrypted under the new key. Note also that this use of a two-hop
onion will only allow X to identify its position in the circuit. The circuit will
be indistinguishable by Y or Z from one built only by telescoping. This is not a
factor in the typical case as most Tor circuits are built from clients not operating
on a Tor network node.

Fig. 2. Circuit setup, third protocol

Another option that will prevent replay while using a single onion to establish
the circuit (as in the second protocol), is to use timestamps. If timestamps are
added to each layer of the onion, then honest nodes will not process them once
they have expired. To be resilient to clock skew, we probably need to have an
expiry interval of c. a half hour or hour rather than a few minutes. This however
raises the prospect that, e.g., the first node if compromised could replay the
onion as much as desired for that hour for whatever traffic-analysis value that
could have. Thus, we could have nodes store a checksum of a few bytes or so
for all onions that pass through within an hour. It can be quite short given the
small likelihood of collision, so neither storage nor lookup should be a problem
even for slow nodes without much memory. And, even if our checksum length is
so short that each node denies, e.g., ten valid circuits a day because of collisions,
the load on the network from circuit setup messages is still greatly reduced, as
is the expected setup time for establishing new circuits. Of course timestamps
can be added to the third protocol so that even replays just to Y can occur for
a shorter period.

Given that most clients are outside the known server node network, it will be
trivial for first nodes to recognize themselves as such. In fact, given the use of
entry guards in all Tor circuits [17], it is likely that all first nodes can identify
themselves with high probability for most circuits. Nonetheless, Tor clients on
Tor network nodes can avoid giving away even this little redundant information
by always building circuits using telescoping, even from the first to second nodes.
The use of onions (where recommended) saves one exchange of messages by
bundling the handshakes of the first and second nodes into one flow up and one
flow down the circuit. Note that the use of “CREATE FAST” to form circuits
from a client located on a Tor node using the current Tor protocol for similar
reasons faces the same issues.

144 L. Øverlier and P. Syverson

The fourth protocol7 is useful in cases where forward secrecy is desired not only
a week after a circuit is closed but as soon as the circuit is closed. This protocol
provides immediate FS, whereas the others provide eventual FS. In the fourth
protocol the number and sequence of message exchanges is the same as in the
current Tor circuit establishment protocol (and the same as in the first protocol).
The number of exponentiations is much fewer however: eleven vs. eighteen total
per circuit, and six vs. nine for exponentiations that cannot be precomputed and
must be done during the protocol run. The others can be done in advance during
idle cycles. Another virtue of the protocol is that it is compatible with changes
that are being contemplated by the Tor developers8 to improve efficiency in what
is stored in directories and how it is distributed. Adding immediate FS to the
first protocol in the obvious way of having nodes send back an ephemeral DH
public key (as opposed to a random value for modifying the existing session key
as in the replay prevention of the third protocol) would not have either of these
advantages. If “CREATE FAST” can be used for the first hop, then the total
exponentiations drops from eleven to seven, of which four must be done during
the protocol run.

The first message from the client to X is similar to the first message of the
first protocol, except that nothing is encrypted (other than by link TLS) because
the client is not yet able to form any session key.

DHcx,pub,CREATE , IDcx,

X responds with

DHxc,pub, IDcx, {CREATED , data}Kxc

where, if rc is the client’s private ephemeral DH key and rx is X ’s private
ephemeral DH key, and since

(DHcx,pub)(DHx,priv+rx) = grc·(DHx,priv+rx) = gDHx,priv·rcgrx·rc =
(DHx,pub)rc · (DHxc,pub)rc = (DHx,pub · DHxc,pub)rc

both C and X can use this as key material for the directional keys Kcx and Kxc.
The ephemeral key pair DHxc,pub/priv (with DHxc,priv = rx) is formed by X for
answering one Tor circuit establishment request, and the private component is
discarded as soon as it is used to form session keys. Note that the exponentiation
necessary to form the DH key pair does not need to be done during the protocol
run. Pairs can be formed and stored during idle cycles of the server. The only
exponentiation that must be done by X during the protocol is the one creating
key material (DHcx,pub)(DHx,priv+rx). The client also has only one exponentiation
to do during the protocol (for each node in the circuit), namely (DHx,pub ·
DHxc,pub)rc to form the same key material. The basic underlying point is one
that is well known to apply to DH protocols in general; nonetheless the current
version of Tor does not seem to take advantage of it.
7 Thanks to Kim Philby for discussions on attempts to break the fourth protocol.
8 Private communication.

Improving Efficiency and Simplicity of Tor Circuit Establishment 145

Unlike the first protocol, authentication comes from X being the only one who
could encrypt the response rather than being the only one who could decrypt the
challenge. In both cases only X possesses DHx,priv, and the client knows that
DHx,pub is X ’s midterm DH key from the signed directory information the client
has. Thus, the client knows that X is the only one who could form Kcx and Kxc

besides the client, given normal assumptions. (What we have done here is effec-
tively a half-authenticated variant of some existing protocols for authenticated
DH key establishment that combine ephemeral and longer term DH parameters,
much as our ElGamal key agreement above was a half-authenticated simplifica-
tion of basic DH; although the exact relation between this protocol and existing
ones is not as clear. We will discuss this more in section 5.)

The client next sends the same “EXTEND” message to X for extending to Y
as in the first protocol, except that as immediately above, there is no encryption
of the message portion arriving at Y , other than the link encryption between X
and Y . Y responds just as X did above. The extension to Z is of the same form
as the extension to Y .

4 Hidden Service Protocol Description

Using the new circuit protocol in existing hidden service designs.
Hidden services can work almost as in the existing deployed design [7,17] only
adapting to the new DH-based carrier in the circuits. It is also possible to in-
corporate so-called valet nodes [18], which protect the introduction points from
being identified by the client or anyone contacting a directory (or the directories
themselves). A server sets up circuit connections to some introduction points
and there it listens for connections. Inside the contact information published or
given to the client the server adds a valet node extension to the means for reach-
ing introduction points, which is encrypted so that only the valet node knows
where the introduction point is. This is completed as described in the just-cited
paper [18].

New Hidden Services setup. One of the major problems with the existing
hidden services protocol is that it has become too complex. Both the deployed
hidden service design and the design using valet nodes require the building of
four circuits collectively comprised of as many as twelve Tor server nodes—
not including the service lookup, the client, or the hidden service node itself.
Extending design ideas from the proposed addition of valet nodes to protect
the introduction point [18], we here propose how to drastically reduce both
complexity and latency when connecting to a hidden service.

Connection between a client and a hidden service requires the setup of two
separate paths, each comprised of two mated Tor circuits. Why incur the large
overhead cost and delay of the second pair of circuits and connection made
through the rendezvous point? Rendezvous circuits provide at least three things
in the deployed hidden service design. (1) Introduction points are not responsible
for serving up the contents of the hidden server for which they are introduction

146 L. Øverlier and P. Syverson

points. (2) Hidden servers (and thus the network) do not have to maintain open
circuits adequate to carry the maximum number of simultaneous connections
they might have. (3) None of the nodes carrying traffic between the client and
hidden server can recognize that they are carrying traffic for that hidden ser-
vice. In particular, blocking of an introduction point is neither as significant nor
therefore as desirable for an adversary wishing to deny service provided by the
hidden server.

The introduction of the valet nodes and contact information changed this, as
we now can have valet nodes protecting the introduction points. And contact
information is structured and served such that it requires some effort for either
valet nodes or introduction points to determine any hidden service for which
they are valet or introduction nodes respectively, even if the hidden service is
publicly listed. Since there are several of each, the value of determining this is
also limited and thus less likely to be pursued. We propose herein to further
change the introduction points into contact points where the service can either
(1) remain connected to the client rather than opening a new connection (Fig. 3),
or (2) set up a new connection to the node preceding the valet node, using this
as a rendezvous point (Fig. 4).

Fig. 3. New direct hidden service usage

The first scenario from Fig. 3 follows simple setup. First the service opens up
connections to contact points (1) and tells them to listen for connections. Then it
locates the valet nodes and produces the contact information which is somehow9

received by the client. The client tunnels out to the valet node and transfers the
valet ticket (2). The valet node unpacks the valet ticket, and extends the tunnel
to the ephemeral contact point (3). After using the valet ticket information to
authorize himself to the contact point, the contact point submits (4) client infor-
mation to the hidden service and connects the two circuits (5) for the client and
the hidden service talking directly. This is much faster but has some implications
that we will discuss in section 5.

The second scenario shown in Fig. 4 is optional and could e.g. be used when
connecting to a public hidden service. The first part of the service setup is
the same, but the client now first constructs a tunnel to the last node in front

9 Could be off-line distribution, or via a directory service, DHT, etc.

Improving Efficiency and Simplicity of Tor Circuit Establishment 147

Fig. 4. New direct hidden service using new rendezvous point

of the valet node (2) and asks this node to listen for a potential connection
request. This node will now act as a potential rendezvous point for connections
back from the hidden service. Then the client extends to the valet node (3),
informs the contact point (4) which authorizes and submits the information to
the hidden service (5). The hidden service now determines whether to establish
the connection through the valet node as in the first scenario, or to contact the
new rendezvous point (6), and the client and the hidden service will have their
new communication channel (7).

Note that, as described, the two scenarios need not be considered two entirely
distinct protocols, but rather dynamic options. As observed earlier, the first
scenario addresses all of the contributions of using rendezvous points except
possibly for the overhead caused by the number of open circuits that a hidden
server must maintain to remain reachable. The network overhead can potentially
be reduced somewhat already by the suggested approach since circuits to the
contact points may be shorter because the valet node is also chosen by the hidden
server. As just observed the hidden service can dynamically choose whether to
communicate with the client through the already opened circuits or to open a
new circuit to the offered rendezvous point. If the server has adequate reserve
contact circuit sockets and bandwidth, it can use the open circuits. If not, it
can use a new circuit to the rendezvous point, thus addressing the open circuits
issue, but doing so in a more efficient, dynamic way.

5 Discussion

5.1 Calculation Reduction

We are ignoring the TLS encryption overhead as this is expected to be almost
like persistent connections and these will exist in all protocols in any case. We
will also ignore the symmetric encryption and the signature verifications as they
are the same in the two versions. The servers will have the additional production
of public DH values for authentication during every rotation period, which safely
can be ignored: we assume a default rotation of one per week.

148 L. Øverlier and P. Syverson

The current version of Tor uses an RSA encrypted DH key exchange includ-
ing generation of DH public and private values when setting up a new circuit to
another node. The client uses an RSA encrypted DH key exchange including gen-
eration of DH public and private values. So the client makes an RSA-encryption
only once and adds a symmetric key if the DH key material is too long for one
RSA encryption (which it currently is). On the server node’s part there is the
decryption of the RSA data and add-on key, decryption of the DH key material,
and calculation of the keys10. Some of these calculations can be made on idle
circuits as noted in Table 1, but to our knowledge the current Tor protocol does
not take advantage of this: all calculations are done during the circuit establish-
ment protocol. The “CREATE FAST” option in the current version will result
in one less DH key exchange and one less RSA encryption/decryption.

Our new proposal. The second protocol uses two DH value generations on the
client side (one for X and Y , and one for Z) but these can be made on idle
cycles, and since the server nodes’ DH values are known through the data from
a directory service, the client can complete the DH-key generation and calculate
the keys from this value. The client then encrypts the rest of the data with
the correct keys immediately. The client avoids the need for RSA encryption
for each node. In addition the nodes do not need to decrypt the RSA data.
They generates the keys directly. In addition the nodes need not send the initial
DH-value since the client uses its public DH values, as shown in Table 1. The
fourth protocol also has two initial exponentiations for the client, but for these
and for each of the circuit nodes the initial exponentiation can be done on
idle cycles, and these should therefore not count in comparing resources. The
client will also have to finalize all three temporary session keys by doing one
exponentiation each, and so will each of the circuit nodes. The “CREATE FAST”
option to the fourth protocol will result in one less DH key exchange. Unlike for
the second protocol, the client should use the same ephemeral public DH key
for Y and Z, to save an exponentiation from this reduction. So there will be
one initialization at the client, and none at X . As with the current Tor circuit
protocol, “CREATE FAST” should not be used if the circuit is initiated by a
client at a directory-listed Tor node.

5.2 Location Hidden Service Effects

Using new DH circuits on the currently deployed hidden service
design. As most circuits used by a client are premade to at least two hops
out, there would be no noticeable change to the user experience from the exist-
ing hidden service design. But every circuit initialization will save the network
the number of exponentiations reflected in Table 1. And as we still have three
new circuits opened for every connection to a hidden service our new protocol
reduces the number of exponentiations in the network significantly.

10 The DH-key is used to generate multiple keys for both encryption and MACs.

Improving Efficiency and Simplicity of Tor Circuit Establishment 149

Table 1. Number of exponentiations calculated during a single circuit setup. *These
initializations can be preconstructed on idle cycles.

Calculation type Current Current Second Fourth Fourth
in a three node circuit design FAST protocol protocol FAST

of client RSA encryptions 3* 2* 0 0 0

of nodes’ RSA decryptions 3 2 0 0 0

of client DH-initializations 3* 2* 2* 2* 1*

of nodes’ DH-initializations 3* 2* 0 3* 2*

of client DH-finalizations 3 2 3 3 2

of nodes’ DH-finalizations 3 2 3 3 2

Using new circuits and valet nodes. If the new circuit setup were imple-
mented on the valet nodes design an estimated reduction in calculations would
be the same as in the existing functionality. Even if our protocol suggestion
supports and makes implementation of valet nodes easier, we will only see the
same amount of latency as in the original version. The only difference is that
the valet node can be based on a half-finished DH exchange and therefore may
also replace the RSA encryption of the valet token.

Using new circuits and direct communication. One of the primary ob-
jections to using the old introduction points as contact points for the hidden
service, was that they might become liable for the content of the hidden ser-
vice. The introduction of the valet nodes changed this because the introduction
points no longer know which service they are assisting. But now the valet nodes
could identify themselves as associated with a service, if they had access to the
contact information for the hidden service. In addition, there could be many
valet nodes per introduction point, so we estimate that the potential problem of
being blocked by some valet node is not likely to be critical for the hidden ser-
vice. When we are talking about really hidden services that have private contact
information this is no issue at all.

By dynamically choosing whether to communicate through the contact and
valet circuits or open a new circuit to the rendezvous point (node before the valet
node in the valet circuit), the hidden server can more effectively manage the net-
work costs of connections to hidden services. Note that the incentives of the hidden
service align with those of the network in that it is incented to only open new ren-
dezvous circuits when utilization of its contact circuits is relatively high. It would
be interesting to investigate further whether the optimal choice of resources in
terms of number of open circuits to contact points maintained vs. percentage of
rendezvous circuits needed is the same for a given hidden server and the network
it is on. Clearly different principals in the system also learn different things about
the relative load on a hidden service from the dynamic choice of whether to cre-
ate a rendezvous circuit (e.g., the valet, contact potential-rendezvous, and guard
nodes). Whether there is any significant information discernible from that (and
whether it would be discernible in the currently deployed hidden service design)
is another interesting question worthy of further study.

150 L. Øverlier and P. Syverson

5.3 Security

Forward Secrecy and Replay. Perhaps the largest security change from cur-
rent Tor implied by all the protocols except the fourth is that the FS they offer
is eventual rather than immediate. If DH keys for server nodes are used for a
week and kept for two, as would be consistent with existing directory usage in
Tor, then it can be as much as two weeks from the time a circuit is initiated
until the session keys in it attain FS; although, it will typically be much shorter.
This has two effects: first is the replayability of circuit setup for traffic analysis
purposes and the vulnerability of circuits to an adversary that attacks nodes
along a circuit during the lifetime of the DH keys to uncover traffic and data,
up to potentially everything sent over a circuit. Only a protocol with eventual
FS is vulnerable to replay once the circuit closes. However, as we showed via the
third protocol, it is possible for an eventual-FS protocol to be vulnerable to an
attack on servers or keys before the FS takes effect but still not be vulnerable
to replay. An adversary willing to go to the effort of such traffic analysis as can
be obtained from replay probably is determined enough to attack servers and
keys as well. This is the reason that we recommend the fourth protocol as a
new Tor circuit protocol rather than the third even if the third is resistant to
replay. Nonetheless, for the vast majority of Tor traffic, both of these concerns
are beyond a reasonable threat model.

Authentication and Protocol Security. The current Tor circuit protocol
was designed to fit message constraints that “a single cell is too small to fit
both a public key and a signature” [7]. It was thus forced to use a nonstandard
design. For this reason, it was analyzed by the NRL protocol analyzer before
it was deployed and found to be secure in the Dolev-Yao model [7]. In 2005,
the Tor developers noticed and corrected that the cryptographic instantiation of
the protocol failed to properly perform adequate checks and left circuit building
subject to significant attacks. Analysis by Ian Goldberg [9] showed that the
corrected protocol instantiation was secure in the random oracle model. What
assurances do we have that the protocols we have presented are secure? At this
point we have only indications, which we now discuss.

Using DH, we do not have the message size issues of the current Tor circuit
protocol, but we have as yet performed neither formal analysis nor a crypto-
graphic proof of the security for any of our protocols. Nonetheless, all but the
fourth protocol are essentially ElGamal key exchange. This is a widely studied
and understood simple protocol for providing implicit one-sided authentication.
As such, these protocols are unlikely to have significant flaws. The fourth proto-
col combines long-term and ephemeral DH elements in a manner similar to many
protocols, but again for only one-sided authentication so that it is simpler. It
is in some ways like a simplification of the MQV protocol [14]. It has the overt
structure of MQV to authenticate the server node to the client and obviously
none of the structure authenticating the client to the server. Our protocol also
does not make use of the specialized group exponentiation that MQV uses. Like
ElGamal, MQV is also a well-studied protocol. Its original design was vulnerable

Improving Efficiency and Simplicity of Tor Circuit Establishment 151

to attacks against properties that are not needed for our purposes and were later
corrected and led to its adoption as an IEEE standard[12]. Despite adoption as a
standard, MQV has not been proven secure either formally or cryptographically.
The only protocol in this group to have a security proof is the so-called Unified
Model (UM) protocol [4]. Adapting the UM protocol in a straightforward way
to our purposes would increase the number of exponentiations required vs. our
fourth protocol. While similarities to UM and other protocols is encouraging, we
intend to subject our protocols to more formal scrutiny in future work.

6 Conclusion

We have proposed a way to simplify circuit setup in the Tor anonymizing net-
work. We have explained how to use predistributed Diffie-Hellman values for
setting up session keys based on half-certified ElGamal key exchange. By using
this new setup for a circuit the client saves three RSA encryptions, and each of
the nodes in the circuit saves one RSA decryption in addition to the initialization
of a DH value. In addition we noted how both the current Tor circuit building
protocol and our new proposed protocols can benefit from precomputation of
much of the information needed for the protocols. This is perhaps especially
beneficial at the nodes rather than clients, where public-key overhead can be a
bottleneck. One of our protocols offers less calculation overhead, and incorpo-
rates immediate forward secrecy. Others provided even more substantial savings
in computation and in communication but only eventual FS. They also serve
to illustrate the distinctions between eventual FS, replay-resistant eventual FS,
and immediate FS.

We have also proposed two new hidden service protocols that uses valet nodes
to protect the introduction point, and therefore can eliminate the circuits to ex-
ternal rendezvous points. As a result of this improvement the hidden service
protocol can now make more direct, lower-overhead connections to hidden ser-
vices without compromising on anonymity or security.

References

1. The Anonymizer. http://www.anonymizer.com/
2. Berthold, O., Federrath, H., Köpsell, S.: Web MIXes: A system for anonymous and

unobservable Internet access. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 115–129. Springer, Heidelberg (2001)

3. Boucher, P., Shostack, A., Goldberg, I.: Freedom systems 2.0 architecture. White
paper, Zero Knowledge Systems, Inc. (December 2000)

4. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment.
Springer, Heidelberg (2003)

5. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous
information storage and retrieval system. In: Federrath, H. (ed.) Designing Privacy
Enhancing Technologies. LNCS, vol. 2009, pp. 46–66. Springer, Heidelberg (2001)

6. Dingledine, R., Mathewson, N.: Tor protocol specification (February 2007),
http://tor.eff.org/svn/trunk/doc/spec/tor-spec.txt

http://www.anonymizer.com/
http://tor.eff.org/svn/trunk/doc/spec/tor-spec.txt

152 L. Øverlier and P. Syverson

7. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium (August 2004)

8. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. on Information Theory 31(4), 469–472 (1985)

9. Goldberg, I.: On the security of the Tor authentication protocol. In: Danezis, G.,
Golle, P. (eds.) PET 2006. LNCS, vol. 4258, Springer, Heidelberg (2006)

10. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding Routing Information. In:
Anderson, R. (ed.) Information Hiding. LNCS, vol. 1174, pp. 137–150. Springer,
Heidelberg (1996)

11. Onion Routing: Brief Selected History,
http://www.onion-router.net/history.html

12. IEEE. P1363 standard specifications for public-key cryptography. IEEE Std 1363-
2000 (January 2000)

13. Kate, A., Zaverucha, G., Goldberg, I.: Pairing-based onion routing. In: Borisov,
N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 95–112. Springer, Heidelberg
(2007)

14. Manezes, A.J., Qu, M., Vanstone, S.A.: Some new key agreement protocols pro-
viding implicit authentication. In: Workshop in Selected Areas of Cryptography
(SAC’95), pp. 22–32 (1995)

15. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton, USA (1997)

16. Murdoch, S.J.: Hot or not: Revealing hidden services by their clock skew. In: CCS
2006. Proceedings of the 13th ACM Conference on Computer and Communications
Security, pp. 27–36. ACM Press, New York (2006)

17. Øverlier, L., Syverson, P.: Locating hidden servers. In: Proceedings of the 2006
IEEE Symposium on Security and Privacy, IEEE Computer Society Press, Los
Alamitos (2006)

18. Øverlier, L., Syverson, P.: Valet services: Improving hidden servers with a personal
touch. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, Springer,
Heidelberg (2006)

19. Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Proxies for Anonymous Routing.
In: Proceedings of the 12th Annual Computer Security Applications Conference,
pp. 95–104. IEEE Computer Society Press, Los Alamitos (1996)

20. Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Anonymous connections and onion
routing. IEEE Journal on Selected Areas in Communications 16(4), 482–494 (1998)

21. Relakks. http://www.relakks.com/

http://www.onion-router.net/history.html
http://www.relakks.com/

Identity Trail: Covert Surveillance Using DNS

Saikat Guha and Paul Francis

Cornell University, Ithaca NY 14853, USA
{saikat,francis}@cs.cornell.edu

Abstract. The Domain Name System (DNS) is the only globally de-
ployed Internet service that provides user-friendly naming for Internet
hosts. It was originally designed to return the same answer to any given
query regardless of who may have issued the query, and thus all data in
the DNS is assumed to be public. Such an assumption potentially con-
flicts with the privacy policies of private Internet hosts, particularly the
increasing numbers of laptops and PDAs used by mobile users as their
primary computing device. IP addresses of such devices in the DNS re-
veal the host’s, and typically the user’s, dynamic geographic location to
anyone that is interested without the host’s knowledge or explicit con-
sent. This paper demonstrates, and measures the severity of an attack
that allows anyone on the Internet to covertly monitor mobile devices
to construct detailed user profiles including user identity, daily commute
patterns, and travel itineraries. Users that wish to identify their private
hosts using user-friendly names are locked into the DNS model, thus be-
coming unwitting victims to this attack; we identify a growing number of
such dynamic DNS users (two million and climbing), and covertly trail
over one hundred thousand of them. We report on a large scale study
that demonstrates the feasibility and severity of such an attack in today’s
Internet. We further propose short-term and long-term defenses for the
attack.

1 Introduction

The Domain Name System (DNS) is a core Internet infrastructure that maps
user-friendly mnemonics to non-user-friendly IP addresses. The DNS resolves IP
addresses for both public services1 like Google, as well as private services2 such
as Alice’s personal laptop. The DNS does not distinguish between the scope of
the services it resolves.

As stated in RFC 4033 [1], the DNS was originally designed with the assump-
tion that the DNS will return the same answer to any given query regardless
of who may have issued the query, and that all data in the DNS is thus pub-
lic. The DNS does not provide any authorization mechanism or other means of
differentiating between inquirers. Indeed, DNS nameservers do not even know
the IP address of the querying host. Network DoS attackers exploit this short-
coming to learn the IP address of the victim and overwhelm the victim’s link
1 Services available to everyone e.g. www.google.com
2 Services available to a small group of people e.g. alice.dyndns.org

N. Borisov and P. Golle (Eds.): PET 2007, LNCS 4776, pp. 153–166, 2007.

154 S. Guha and P. Francis

to the Internet. This paper identifies a different attack whereby merely learn-
ing the IP address of the victim can result in a breach of privacy defined as
contextual-integrity [2].

An IP address implicitly encodes a wealth of information about the host. The
address identifies the host’s ISP (university, corporation, residential broadband
ISP etc.), and the geographical location of the host to within a nearby city [3].
This information is available in public WHOIS databases, reverse DNS entries [4],
and commercial databases [5]. While leaking the geographic location of static
Internet hosts (e.g. a corporate webserver) may not be a critical privacy concern,
leaking the dynamic geographic location of private, and often mobile hosts (e.g.
employee laptops) may comprise an unacceptable privacy breach. The DNS does
not capture this difference between public and private hosts.

Private services that wish to use user-friendly names are consequently forced
to make their existence and location visible to everyone on the Internet. Alice,
for instance, may wish to run a private FTP server on her personal laptop that
she can use to transfer files to and from her laptop whether she is at work or at
home. Since the laptop may often acquire a different IP address each time she
connects, Alice is forced to relearn her address each time. Alternatively, Alice
can configure her laptop to update the DNS with its latest address such that
she can use a stable user-friendly DNS name in her FTP client. By putting her
address in the DNS for her own personal use, however, Alice unwittingly reveals
her geographic location to anyone on the Internet.

DynDNS [6], No-IP [7], TZO [8], and many other online services [9,10,11]
cater to individuals such as Alice that wish to register DNS names and dynam-
ically update their IP address mapping. Update clients are available for a wide
range of platforms including not only Windows, Linux and MacOS, but also
cellphones, pocket PCs and embedded devices [12]. While commercial services
like Akamai [13] provide IP address confidentiality of the origin service by redi-
recting all data through Akamai proxies, it is typically targeted at large public
websites (Google, Microsoft etc.) and not small private services such as Alice’s.
Users such as Alice are entirely dependent on the dynamic DNS services men-
tioned earlier for user-friendly names, with services such as DynDNS boasting
of a growing user-base of two million users [14].

As we report later, a majority of these dynamic DNS names are for mobile
private hosts. Common services running on these hosts include private FTP
and web servers, BitTorrent trackers, and web-cams. Even though each of the
services may enforce access control policy at the service level, simply registering
the host’s address in the DNS leaks private information to anyone who cares to
learn it. The service owner must therefore chose either user-friendly DNS naming
or privacy.

This privacy issue was not considered one way or another in the design of
the DNS. In a largely static Internet, the IP address does not divulge much
private information and thus the issue has not been important in the past. In the
present Internet, however, with mobile private hosts, the lack of confidentiality
of private IP addresses published into the DNS is a privacy risk as mobile hosts,

Identity Trail: Covert Surveillance Using DNS 155

unlike static hosts, reveal the dynamic geographic location of the user. This is
exacerbated by current trends where laptops are surpassing desktops in retail
sales [15].

Overall this paper makes three contributions.

1. We identify an attack that allows an attacker to covertly monitor a victim’s
location at any given moment, and over time build a detailed profile of
the victim including the victim’s identity, daily commute patterns, and trip
itineraries.

2. We demonstrate the feasibility of such an attack on the Internet today by
performing surveillance on over a hundred thousand users without raising
any alarms and report the depth of private information gleaned.

3. We propose short-term fixes to the DNS that can be deployed today to miti-
gate this attack, and discuss a long-term solution for secure name resolution
for private services on the Internet.

The rest of the paper is organized as follows. Section 2 presents an overview
on the DNS, dynamic DNS services and related work in DNS security. Section 3
presents our attack. Section 4 reports on a covert surveillance experiment of over
a hundred thousand Internet users. Section 5 discusses short-term and long-term
measures to defend against such an attack. Section 6 concludes the paper and
outlines future work.

2 DNS Overview and Related Work

The DNS describes the architecture and infrastructure for name resolution on
the Internet [16]. The namespace is hierarchical for user-friendliness and ease of
administration. Each subtree of the namespace (called zone or domain) is man-
aged by designated nameservers referred to as the authoritative nameservers for
that domain. An authoritative nameserver responds with the IP address (or other
information in the DNS) for a DNS name in its domain when queried. If the DNS
name lies outside the nameserver’s domain, the server can forward the query to
another nameserver that may be able to answer authoritatively (called recursive
querying), and forward the response back to the original inquirer. Alternatively,
the server can simply return the address of the next server to query (called
non-recursive querying). A server that performs recursive querying may cache
the results of any queries that it forwards and respond to subsequent queries
for the same DNS name from its cache thereby improving performance and re-
ducing the load on the authoritative nameservers. Clients OS network stacks
typically implement the minimum functionality necessary to send the query to
a recursive nameserver; ISPs and public services provide recursive nameservers
that customers can use for all queries.

The DNS does not enforce any access control policy before name resolution. In
particular, the authoritative nameserver typically does not learn the identity of
the host performing the name resolution. This is because a recursive DNS query

156 S. Guha and P. Francis

contains the address of only the nameserver performing the recursive lookup,
and not the address of the host on whose behalf the query is being performed.
Furthermore, when a response is cached and a query answered from the cache,
the authoritative nameserver does not learn that a lookup took place. Any host
on the Internet can query for the IP address of another host through a recursive
nameserver without revealing the original inquirer’s identity to the authoritative
nameserver.

Dynamic DNS services such as DynDNS administer multiple zones within
which a user can create a DNS name (e.g. alice.dynalias.org, or bob.homeip.net).
The user configures a background DynDNS client application to run on their
laptop and update the laptop’s IP address with the service every time the IP
address changes. DNS name creation and dynamic updates of the associated IP
address are performed over HTTP and protected with HTTP-based authentica-
tion methods. The nameservers for these dynamic DNS services, however, are
typical DNS nameservers that cannot authenticate the source of a DNS query.

In addition to resolving the DNS name to an IP address, the DNS provides
inverse resolution that maps an IP address to a canonical DNS name for that
host. The canonical name for an IP address is assigned by the host’s ISP. For
example, the DNS name alice.dyndns.org may resolve to 192.0.2.1 in the ad-
dress block allocated to Acme Inc. The reverse DNS resolution for the same
IP, however, may return host-342.acme.org as the canonical name for the host.
Anyone can find the ISP-assigned canonical name for the host that a DNS name
points to.

Past work in securing DNS can be classified into two categories. The first cat-
egory deals with protecting the DNS from outages and DoS attacks. CoDNS [17]
and CoDoNS [18] use a peer-to-peer substrate for DNS queries in order to im-
prove resiliency against failures and shield authoritative nameservers from flash
crowds and DoS attacks, but otherwise allow anyone to resolve the DNS name
for any host. The second category of past work deals with the integrity of DNS
responses. DNSSEC [1] provides data and origin authentication of DNS data.
ConfiDNS [19] provides better integrity of non-DNSSEC responses in CoDNS.
Gabrilovich et al. [20] identify homograph attacks against the DNS where a user
can be tricked to resolve a look-alike DNS name instead of the intended DNS
name, and offer some potential solutions. None of these systems authenticate
the source of the DNS query, and consequently cannot defend against the attack
identified in this paper.

Proposed replacements for the DNS allow an individual to learn the vic-
tim’s routing and addressing information without the victim’s explicit consent.
DOA [21] unconditionally resolves an endpoint identifier to a stack of addresses
revealing the route to the destination. UIA [22] allows endpoint addresses to
be resolved as long as the endpoint can be named; the ability to name another
endpoint is transitive and is likely to be universal for global communication.
Neither of the proposed approaches are designed to protect the confidentiality
of a private host’s address.

Identity Trail: Covert Surveillance Using DNS 157

3 Identity Trail Attack

The attack intends to track a victim’s location covertly. The 9-line attack code
is listed in Fig. 1. The attack consists of logging a DNS lookup (line 6) and IP
address to geolocation result (line 8) every hour. The geolocation uses a public
service [5] that returns the city, province, and country of the host as well as the
canonical hostname for the IP address. The attack assumes that the attacker
knows the DNS name of the victim’s laptop; while this is easy to arrange for a
boss spying on their employee or a spouse spying on their significant other, to
demonstrate the attack at scale we discuss in the next section how we learned
the names of tens of thousands of potential victims. The attack uses only public
services such as the DNS and IP geolocation as they were designed. The attack
does not require superuser privileges, nor does it need to send any packets to the
host being monitored. Finally, thousands of hosts can be monitored in parallel.
The extent of private information that can be extracted using this attack is
explored in the next section.

1: #!/bin/bash
2: HOST=victim.dynalias.net
3: GEO=’http://www.ippages.com/simple/’
4: FLD=’hostname,ip,city,state,country’
5: while sleep 3600; do
6: IP=$(host $HOST | awk ’{print $4}’)
7: date
8: curl -s "$GEO?get=$FLD&ip=$IP"
9: done

Fig. 1. BASH shell script tracking the location of victim.dynalias.net every hour

4 Attack Validation

In order to determine the feasibility and severity of launching the described
attack over the Internet today, we monitored the mobility of over a hundred
thousand Internet users. The attack involved discovering names of potential
victims and monitoring their IP address for extended periods of time without
being detected. Finally, we analyzed the mobility patterns in the trace to profile
our victims’ daily commute patterns, business and personal trip itineraries and,
in some cases, even the identities of the victim.

4.1 Discovering DNS Names

The attack presented in the previous section assumes that the attacker knows
the DNS hostname for the victim’s computer. While this can be easily arranged
when the attacker knows the victim (later we report on how one of the authors
of this paper was tracked), in order to broaden our investigation we targeted
anonymous DynDNS users.

158 S. Guha and P. Francis

We discovered 36,011 potential victims through a variety of methods. In our
first experiment, we targeted users of the DynDNS service by first performing
Google and Yahoo! searches for all 65 DynDNS-controlled domains under which
users can register DNS names. We found 4351 DNS names (far fewer than we
expected) mentioned in web pages, mailing list archives, USENET posts, and
other publicly searchable forums. In our second experiment, we performed a
dictionary scan of four of the most popular DynDNS domains. Our dictionary
consisted of 24,289 combinations of common first and last names and initials. The
scan successfully resolved 31,660 DNS names with a success rate of up to 39% for
the dyndns.org domain; the high success rate suggest similarities with [23] where
the authors find that registered userids, in many cases, match first or last names
of the user. The scan was performed from 40 hosts in 5 hours and rate-limited
to a conservative aggregate of 5 packets per second distributed over 5 DynDNS
nameservers to avoid triggering potential DDoS3 responses. Only 9 of the hosts
discovered in the dictionary scan were also returned by the online search engines
suggesting almost all the names discovered by the dictionary scans are for private
services. To verify this hypothesis, we performed a third experiment where we
used Nmap [24] to scan a subset of 100 hosts discovered to determine the services
provided. We discovered that 50% run HTTP servers, 21% run FTP servers, and
11% run the Windows File-and-Printer sharing service; the FTP and Windows
services requires authentication while the default HTTP homepage is usually
devoid of content and hyperlinks (possibly privacy by obscurity, where the actual
content is located at a secret URL on the server).

Overall we make the following three observations from the above experiments.
(1) The services discovered are intended for private use based on service authen-
tication, lack of advertisement on public Internet forums, and lack of content on
default landing pages. (2) An attacker can covertly discover a large number of
potential victims without triggering alarms. (3) Poorly chosen DNS names reg-
istered by DynDNS users, in some cases, leak the name of the user for a mobile
host.

4.2 Monitoring Hosts

In our first surveillance experiment, we monitored 18,720 hosts from July 20,
2006 to August 8, 2006 and found evidence of deliberate user mobility. The
monitoring load was rate-limited to 1 packet per second and did not raise any
alarms at DynDNS or at the source (to the best of our knowledge). Figure 2 is a
screenshot of a summer road-trip taken by user M as tracked by our application.
M’s name resolves to a Seattle IP on 7/20. It subsequently resolves to Port
Angeles WA on 7/21, and continues down a southern route along the west-
coast through Otis OR, Smith River CA, Garberville CA, Los Angeles CA,
Los Alamos CA, and Garden Grove CA at 1–2 day intervals. M then resolves
to Las Vegas, NV for 3 days starting the night of 8/2. Finally, M appears to
drive north through Montana back home to Saskatoon, Canada on 8/8, which

3 Distributed Denial of Service.

Identity Trail: Covert Surveillance Using DNS 159

Fig. 2. Tracking a user’s summer road-trip through the DNS

is where he was resolved to on 11/7 as well. Based on reverse DNS lookups, M
logs in through local broadband ISPs except on 7/29 when M logs in through
a dial-up ISP whose proxy servers are located in Reston, Virginia; fundamental
limitations of geolocalization pertaining to proxies are explained in [3]. M runs
a local firewall configured to filter all inbound packets. Unfortunately, we were
unable to disambiguate M’s real identity enough to contact him for verification.

In another trace (not illustrated), user S is geolocated to San Mateo CA until
7/30. S is subsequently resolved to Hyderabad, India for the week commencing
Monday 7/31 through Sunday 8/6. For a few hours on 7/30 and 8/6, S is geolo-
cated to a Singapore address suggesting that S flew across the pacific on these
dates. In yet another trace, user K is geolocated to Vancouver Canada until 7/26,
and then to Ottawa Canada after that. In this case, we were able to identify K
through the webpage (hosted on the mobile host) and contact him over email
for positive confirmation of the correctness of our tracking. That said, we failed
to contact the users for an overwhelming majority of the hostnames tracked due
to the private nature of services run by them; in particular, as mentioned previ-
ously, FTP servers when present required non-anonymous user authentication,
HTTP servers delivered blank default pages (except for user K for example) and
so on.

Confirmation from user K above notwithstanding, we verified the correct-
ness of our application in our second surveillance experiment where we tracked
the authors of this paper and compared their traces to known real-world data.
Figure 3 plots the mobility of one of the authors from August 18, 2006 to
November 2, 2006. All the information in the figure was gathered by performing
geolocalization and reverse DNS lookups for the IP address. Geolocation within
the United States was correct to within 100 mi, and in Italy was correct to within

160 S. Guha and P. Francis

Italy

Philadelphia
(airport)

Home
(Ithaca)

Cornell U.
(CS Dept.)

Princeton

Cisco Systems
(San Jose)

08/19 09/02 09/16 09/30 10/14 10/28

Date and Time (noon EDT)

Fig. 3. Tracking a user’s daily commute and travel through the DNS

250 mi. The daily commute patterns are usually correct to within one or two
hours, but in some instances when the author did not turn the tracked laptop on
for several hours after commuting, the trace is inaccurate. The trace, however,
does accurately capture university holidays, work related trips and one airport
layover. Based on the reverse DNS lookups suggesting the user’s affiliation to the
Cornell University Computer Science Department, the trip to Cisco Systems Inc.
in San Jose, the overlap of the Italy trip with SIGCOMM 2006, a popular data
communications conference in Italy during the same period, and the published
proceedings of the conference, there was enough information to narrow down
the identity of the person tracked to within two people in the Cornell CS de-
partment. Additional public information available on the department homepage
yielded a unique match.

In our third surveillance experiment, we follow a random sampling of 118,000
DNS names for 77 days beginning August 14, 2006. Anonymized update records
were obtained from logs kept by DynDNS. We filter out updates where consec-
utive IP addresses for a user belong to the same /24 subnet, or belong to the
same ISP and are geolocated to the same city in order to discount many DHCP-
related updates. Figure 4 plots the number of unique cities, provinces, countries
and networks that mobile users were resolved to in rank order. To account for the
geolocation errors observed in the previous experiment, we cluster geolocations
within ±0.75◦ latitude and longitude of each other to a single location, which is
plotted as a separate curve in the figure. As evident from the figure, the median
number of updates across all users was 64; in the median case a user logged in
from IP addresses geolocated to 15 cities, and 3 provinces over the course of our
measurement. The number of users connected to more than one ISP was 15,055,

Identity Trail: Covert Surveillance Using DNS 161

 1

 10

 100

 1000

 10000

 0 20000 40000 60000 80000 100000

U
ni

qu
e

lo
ca

tio
ns

 (
lo

gs
ca

le
)

User (rank)

64 updates

15 cities

3 provinces

2 clusters

Total Updates
Cities

Provinces
Geographic Clusters

Networks
Contries

Fig. 4. Tracking the mobility of 118,000 users

while that geolocated to more than one country was 3,210. The median number
of geographically distinct clusters a host was geolocated to was 2.

While the data above is indicative of user mobility, we are quick to point out
the limitations of our measurement.

1. First, we do not exclude dynamic DNS entries potentially caused by botnets.
In [25], the authors claim that botnet operators use Dynamic DNS services
to relocate the “command and control” (C&C) server to dodge efforts by
local authorities shutting down identified C&C servers. While such activities
may explain the outliers in our sample (hosts that resolve to a hundred cities
in only 77 days), we do not investigate such outliers any further.

2. Second, we use a proprietary commercial service for geolocation. The ac-
curacy of such services is biased towards country-level and province-level
geolocation more than city-level geolocation based on anecdotal evidence,
although city-level geolocation is typically accurate to a within a nearby city.
Recent systems such as Constraint-based geolocation [26] and Octant [27]
have been proposed to improve geolocalization accuracy, however, the cov-
erage provided by these services was not sufficient for our dataset.

3. Third, a host switching between different network providers in one city may
be geolocated to different nearby cities based on the providers’ access routes.
Conversely, a mobile host accessing the network from different nearby cities
through the same provider may be geolocated to a common nearby city.

4. Fourth, a physically static host behind an ISP that uses the same address
space for a geographically diverse region, particularly in combination with
traditional NATs [28], may be geolocated to different cities in that region.

162 S. Guha and P. Francis

Clustering geolocations based on proximity helps mitigate the effect of these
artifacts, but does not completely eliminate them. Nevertheless, based on our
(rather noisy) geolocation data, we believe that between 70% (based on clus-
tering) to 91% (based on actual geolocations) of the users in our DynDNS-log
dataset logged in from at least two different locations4.

Overall we make the following four observations. (1) A majority of users up-
dating their IP address on DynDNS are mobile users. (2) The IP address can
accurately track a user to within a few hundred miles. (3) The extent of private
information leaked over time is potentially significant enough to reconstruct trip
itineraries, daily commute patterns, and in some cases, narrow down the identity
of the user. (4) This entire surveillance operation can be performed covertly by
any attacker on the Internet.

5 Solutions

Fundamentally, the Internet lacks an access-controlled name resolution service
for private hosts. The DNS has been shoehorned to fill this need, however, as
illustrated by the attack described in this paper, it is ill suited for this purpose.
Particularly, the DNS lacks access control policy enforcement for name reso-
lution. At present, any attacker on the Internet can track the mobility of any
DNS-named host at any given time. In the short-term, there is no substitute for
DNS for naming private endhosts, however, nameservers can use heuristics to
limit the scope of the attack without requiring any client modifications. In the
long-term, however, the core issue of name resolution policy of private services
must be tackled.

5.1 Short-Term Defense

The DNS does not provide any mechanism for a host to specify access control
policies for its own name. One fix would be to encourage users to pick obscure
DNS names and restrict their dissemination to trusted parties. While this ap-
proach would hinder our dictionary attack, somewhat counterintuitive is that the
obscurity provided by this approach is nullified when combined with DNSSEC.
The DNSSEC [1] standard currently requires that the entire list of zone names
be revealed to all in order to provide signed proof of non-existence of names
that do not exist. An attacker can therefore simply enumerate all the names in
a DNSSEC secured zone to discover potential victims5.

A different fix would be for the authoritative nameserver to restrict host
lookup to a white-list of recursive nameservers authorized for that host. The
white-list may be set statically by the user, dynamically by the update applica-
tion, or heuristically by the nameserver based on query patterns. Deploying a
white-list does not require changes to the DNS protocol or client applications.
4 Where “location” includes different providers (residential ISP, public wi-fi, office

etc.) in the same city, as well as different cities.
5 NSEC3 [29], a proposed extension to DNSSEC, addresses this issue.

Identity Trail: Covert Surveillance Using DNS 163

This approach relies on access control of ISPs’ recursive nameservers, which
is typically enabled in response to recent attacks [30]. The approach protects
against attackers on networks far from the victim, but not from attackers on
the same network as the victim since both would have access to a common ISP
recursive nameserver, which would be on the white-list.

Another way to add access control to the DNS protocol itself is to encrypt
responses at the nameserver so only authorized users may decrypt them. Users
of a private service could configure shared secrets or public keys with the au-
thoritative nameserver. The nameserver could then encrypt the IP address using
symmetric or asymmetric encryption [31,32] based on the attack model. The key
management required for such a solution that properly takes into account the
distributed caching and recursion inherent in DNS as well as complex endhost
privacy policies, however, is likely to be a challenge.

A flawed approach is to require application-level proxies for private services.
For example, a private service could subscribe to, and advertise the address of,
a public proxying service which would proxy application data between the end-
points. Akamai [13] offers such a commercial HTTP and FTP proxy service. The
cost of providing such a service is significant as the service proxies application
data unlike the DNS, which only participates in initial name resolution. As a re-
sult, the proxy service must be well-provisioned and massively replicated. While
a commercial model for using such a proxy service exists for large commercial
services (e.g. Google, Microsoft, CNN etc.) it is not obvious whether one exists
for smaller private services (e.g. Alice’s private FTP service). Furthermore, op-
erating at the application-level in the middle of the network, such data proxies
constrain innovation at the network edges as the middle must be upgraded to
support each new application — a consequence of violating the end-to-end un-
derpinnings of the Internet [33]. A better approach combines the off-path6 aspect
of DNS with the privacy preserving aspect of proxying, as described below.

5.2 Long-Term Defense

Modifying the name resolution process to identify the inquirer and to directly
involve the access control policies of the private host provides access-controlled
and scalable name resolution in the long run. Consider a name resolution ar-
chitecture where Alice’s laptop registers its IP address with a registrar. The
registrar plays the role similar to that played by an authoritative nameservers
in the DNS. In order to communicate with Alice, Bob contacts Alice’s registrar.
Instead of returning Alice’s IP address to Bob, however, Alice’s registrar proxies
Bob’s query to Alice’s IP address and proxies Alice’s responses to Bob7. The reg-
istrar conceals Alice’s IP address from Bob. Alice can conduct an identification
protocol over this proxied path, and reveal her IP address to Bob if he is granted
6 A service not along the application data path, but rather off to the side such that

application data packets do not have to pass through it.
7 Similar to SIP [34], except endhosts do not depend on the registrars to perform

authentication. Registrars simply provide a proxied communication channel that
conceals the IP addresses involved.

164 S. Guha and P. Francis

access. While this proxy-based end-to-end name resolution architecture doesn’t
allow for in-network caching, it has been shown that caching the heavy-tail of
DNS queries [35] for private hosts is of little value in the first place [36].

Proxy-based end-to-end secure name resolution complements emerging Inter-
net architectures for private hosts. In [37], we propose an Internet architecture
where endpoints negotiate protocol stacks, configuration parameters and coordi-
nate the opening of NAT/firewall ports given a third party to proxy and mediate
connection-setup messages; the registrar used for access-controlled name resolu-
tion can provide this proxy service for private hosts.

More research is needed, however, to better understand theprivacy-performance
trade-off for theDNSaswell as for end-to-end securename-resolution in the context
of public and private services. For public services, it may be the case that there is
no need to replace the DNS with the more heavy-weight approach as policy usually
allows anyone to learn the IP address. For private services, on the other hand, it
may be the case that the need for secure name resolution outweighs the latency
added by the proxy mechanism.

6 Conclusions and Future Work

This paper presents an attack on mobile users that dynamically register their IP
address in the DNS. The attack allows any attacker on the Internet to covertly
glean private information about the user including daily commute patterns and
itineraries for trips. The paper demonstrates the ease with which hundreds of
thousands of vulnerable users can be monitored without their knowledge. This
information could easily be logged for later use should the attacker later learn
or infer the identity of the user. The root cause of the attack lies in the lack
of access control for DNS name resolution combined with an increasing number
of mobile Internet users. This paper suggests a short-term patch to existing
DNS services that restricts the scope of the attacker, and a more long-term
solution that involves end-to-end secure name resolution for private services on
the Internet. The proposed solutions are preliminary in that we do not have a
lot of field experience with them. One goal of this paper is to draw the attention
of the community to attacks on the DNS that stem from design assumptions in
the original Internet architecture that are no longer valid.

Because this attack exploits the public nature of IP addresses for private hosts,
this paper additionally suggests that it is appropriate to ask whether the DNS
with its focus on public services should be supplemented with a secure name
resolution service for private hosts.

We certainly do not answer this question—indeed we have not fully imple-
mented the end-to-end name resolution architecture, much less experimented
with it on a broad scale and studied its security provisions. We do believe, how-
ever, that secure name resolution for private services deserves debate within the
research community.

Identity Trail: Covert Surveillance Using DNS 165

Acknowledgemnts

The authors would like to acknowledge the support of Jeremy Hitchcock and
the DynDNS team for this study. We would also like to thank the anonymous
reviewers for their helpful suggestions, including the one about interactions with
the DNSSEC enumeration vulnerability.

References

1. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: RFC 4033: DNS Security
Introduction and Requirements (March 2005)

2. Nissenbaum, H.: Privacy as Contextual Integrity. Washington Law Review 79(1),
119–158 (2004)

3. Padmanabhan, V.N., Subramanian, L.: An investigation of geographic mapping
techniques for Internet hosts. In: Proceedings of the SIGCOMM 2001, San Diego,
CA (August 2001)

4. Spring, N., Mahajan, R., Anderson, T.: Quantifying the Causes of Path Inflation.
In: Proceedings of the SIGCOMM 2003, Karlsruhe, Germany (August 2003)

5. The Privacy Ecosystem: IPPages – IP Address properties of your Internet Connec-
tion

6. Dynamic Network Services, Inc.: DynDNS – A free DNS service for those with
dynamic IP addresses

7. Vitalwerks Internet Solutions, LLC.: No-IP – Dynamic DNS, Static DNS for Your
Dynamic IP

8. Tzolkin Corporation: TZO.com – Dynamic DNS Services for your Dynamic or
Static IP Address

9. Deerfield dot com: DNS2GO – Dynamic DNS Services for your IP Address
10. CanWeb Internet Services Ltd.: DynIP – Dynamic DNS Service
11. GravityFree: DtDNS – Your Complete DNS Solution
12. Dynamic Network Services, Inc.: DynDNS: Third Party Clients – keep IP address

current, use with all DNS services
13. Akamai Technologies, Inc.: Akamai: How it works
14. Dynamic Network Services, Inc.: Private communications (2006)
15. Kanellos, M.: Notebooks pass desktops in U.S. retail, ZDNet News (February 2006)
16. Mockapetris, P., Dunlap, K.: Development of the Domain Name System. In: Pro-

ceedings of the SIGCOMM 1988, Stanford, CA (August 1988)
17. Park, K., Pai, V.S., Peterson, L., Wang, Z.: CoDNS: Improving DNS performance

and reliability via cooperative lookups. In: Proceedings of the Sixth Symposium on
Operating Systems Design and Implementation (OSDI 2004), San Francisco, CA
(December 2004)

18. Ramasubramanian, V., Sirer, E.G.: CoDoNS: The Design and Implementation of
a Next Generation Name Service for the Internet. In: Proceedings of SIGCOMM
2004, Portland, OR (August 2004)

19. Poole, L., Pai, V.S.: ConfiDNS: Leveraging Scale and History to Improve DNS
Security. In: Proceedings of WORLDS 2006, Seattle, WA (November 2006)

20. Gabrilovich, E., Gontmakher, A.: The Homograph Attack. Communications of the
ACM 45(2), 128 (2002)

21. Walfish, M., Stribling, J., Krohn, M., Balakrishnan, H., Morris, R., Shenker, S.:
Middleboxes No Longer Considered Harmful. In: Proceedings of the OSDI 2004,
San Francisco, CA (December 2004)

166 S. Guha and P. Francis

22. Ford, B., Strauss, J., Lesniewski-Laas, C., Rhea, S., Kaashoek, F., Morris, R.:
Persistent Personal Names for Globally Connected Mobile Devices. In: Proceedings
of the OSDI 2006, Seattle, WA (November 2004)

23. Perkowitz, M., Doorenbos, R.B., Etzioni, O., Weld, D.S.: Learning to Understand
Information on the Internet: An Example-Based Approach. Journal of Intelligent
Information Systems 8(2), 133–153 (2004)

24. Gordon Lyon: Nmap Security Scanner
25. Dagon, D., Gu, G., Zou, C., Grizzard, J., Dwivedi, S., Lee, W., Lipton, R.: A

Taxonomy of Botnets. In: Proceedings of CAIDA DNS-OARC Workshop, San Jose,
CA (July 2005)

26. Gueye, B., Ziviani, A., Crovella, M., Fdida, S.: Constraint-based geolocation of
internet hosts. IEEE/ACM Transactions on Networking 14(6), 1219–1232 (2006)

27. Wong, B., Stoyanov, I., Sirer, E.G.: Octant: A Comprehensive Framework for the
Geolocalization of Internet Hosts. In: Proceedings of the NSDI 2007, Cambridge,
MA (May 2007)

28. Srisuresh, P., Egevang, K.: RFC 3022: Traditional IP Network Address Translator
(Traditional NAT) (January 2001)

29. Laurie, B., Sisson, G., Arends, R., Blacka, D.: Internet draft: DNSSEC Hashed
Authenticated Denial of Existence Work in progress. draft-ietf-dnsext-nsec3-11.txt
(July 2007)

30. US-CERT: The Continuing Denial of Service Threat Posed by DNS Recursion
(v2.0)

31. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of
Symmetric Encryption. FOCS 00, 394 (1997)

32. Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption With
Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, Springer, Heidelberg (2005)

33. Saltzer, J.H., Reed, D., Clark, D.D.: End-to-end arguments in system design. ACM
Transactions on Computer Systems 2(4), 277–288 (1984)

34. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks,
R., Handley, M., Schooler, E.: RFC 3261: SIP Session Initiation Protocol (June
2002)

35. Jung, J., Sit, E., Balakrishnan, H., Morris, R.: DNS Performance and Effectiveness
of Caching. In: Proceedings of SIGCOMM Internet Measurement Workshop, San
Francisco, CA (November 2001)

36. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web Caching and Zipf-like
Distributions: Evidence and Implications. In: Proceedings of INFOCOM 1999, New
York, pp. 126–134 (March 1999)

37. Guha, S., Francis, P.: An End-Middle-End Approach to Connection Establishment.
In: Proceedings of SIGCOMM 2007, Kyoto, Japan (August 2007)

Sampled Traffic Analysis by

Internet-Exchange-Level Adversaries

Steven J. Murdoch and Piotr Zieliński

University of Cambridge, Computer Laboratory
http://www.cl.cam.ac.uk/users/{sjm217, pz215}

Abstract. Existing low-latency anonymity networks are vulnerable to
traffic analysis, so location diversity of nodes is essential to defend against
attacks. Previous work has shown that simply ensuring geographical di-
versity of nodes does not resist, and in some cases exacerbates, the risk of
traffic analysis by ISPs. Ensuring high autonomous-system (AS) diver-
sity can resist this weakness. However, ISPs commonly connect to many
other ISPs in a single location, known as an Internet eXchange (IX). This
paper shows that IXes are a single point where traffic analysis can be
performed. We examine to what extent this is true, through a case study
of Tor nodes in the UK. Also, some IXes sample packets flowing through
them for performance analysis reasons, and this data could be exploited
to de-anonymize traffic. We then develop and evaluate Bayesian traffic
analysis techniques capable of processing this sampled data.

1 Introduction

Anonymity networks may be split into two categories: high latency (e.g. Mixmin-
ion [1] and Mixmaster [2]) and low latency (e.g. Tor [3], JAP [4] and Free-
dom [5]). High latency networks may delay messages for several days [6] but
are designed to resist very powerful attackers which are assumed to be capa-
ble of monitoring all communication links, so called global passive adversaries.
However, the long potential delay makes these systems inappropriate for pop-
ular activities such as web-browsing, where low-latency is required. Although,
in low-latency anonymity networks, communications are encrypted to maintain
bitwise-unlinkability, timing patterns are hardly distorted, allowing an attacker
to deploy traffic analysis to de-anonymize users [7,8,9]. While techniques to resist
traffic analysis have been proposed, such as link padding [10], their cost is high
and they have not been incorporated into deployed networks.

Instead, these systems have relied on the assumption that the global passive
adversary is unrealistic, or at least those who are the target of such adversaries
have larger problems than anonymous Internet access. But even excluding the
global passive adversary, the possibility of partial adversaries remains reason-
able. These attackers have the ability to monitor a portion of Internet traffic but
not the entirety. Distributed low-latency anonymity systems, such as Tor, aim
to resist this type of adversary by distributing nodes, in the hope that connec-
tions through the network will pass through enough administrative domains to
prevent a single entity from tracking users.

N. Borisov and P. Golle (Eds.): PET 2007, LNCS 4776, pp. 167–183, 2007.

http://www.cl.cam.ac.uk/users/sjm217/
http://www.cl.cam.ac.uk/users/pz215/

168 S.J. Murdoch and P. Zieliński

This raises the question of how to select paths through the anonymity net-
work to maximize traffic analysis resistance. Section 2 discusses different topol-
ogy models of the Internet and their impact on path selection. We suggest that
existing models, based on Autonomous System (AS) diversity, do not properly
take account of the fact that while, at the AS level abstraction, a path may
have good administrative domain diversity, physically it could repeatedly pass
through the same Internet eXchange (IX). Section 3 establishes, based on In-
ternet topology measurements, to what extent the Tor anonymity network is
vulnerable to traffic analysis at IXes.

Section 4 describes how IXes are particularly relevant since, to assist load
management, they record traffic data from the packets being sent through them.
As aggregate statistics are required and the cost of recording full traffic would be
prohibitive, only sampled data is stored. Hence, the quality of data is substan-
tially poorer than was envisaged during the design and evaluation of previous
traffic analysis techniques. Section 5 shows that, despite low sampling rates, this
data is adequate for de-anonymizing users of low-latency anonymity networks.
Finally, Section 6 discusses further avenues of research under investigation.

2 Location Diversity in Anonymity Networks

Tor has been long suspected, and later confirmed [11,12], to be vulnerable to
an attacker who could observe both the entry and exit point of a connection
through an anonymity network. As no intentional latency is introduced, timing
patterns propagate through the network and may be used to correlate input and
output traffic, allowing an attacker to track connection endpoints.

Delaying messages, as done with email anonymity systems, would improve
resistance to these attacks, at least for a small number of messages. However,
the additional latency here (hours to days) would, if applied to web browsing,
deter most users and so decrease anonymity for the remainder [13]. In addition
to the scarce bandwidth in a volunteer network, full link-padding would also
introduce catastrophic denial of service vulnerabilities, because all parties would
need to stop communicating and re-negotiate flow levels when one party left.
Hence, the only remaining defense against traffic analysis is to ensure that the
adversary considered in the system threat model is not capable of simultaneously
monitoring enough points in the network to break users’ anonymity.

While this approach would be of no help against a global passive adversary,
more realistic attackers’ traffic monitoring capabilities are likely to be limited to
particular jurisdiction(s), whether they derive from legal or extra-legal powers.
This intuitively leads to the idea that paths through anonymity networks should
be selected to go through as many different countries as possible. The hope here
is that an attacker attempting to track connections might have the ability to
monitor traffic in some countries, but not all those on the path.

Unfortunately, Feamster and Dingledine [14] showed this approach could actu-
ally hurt anonymity because international connections were likely to go through
one of a very small number of tier-1 Internet Service Providers (ISP) – those who

Sampled Traffic Analysis by Internet-Exchange-Level Adversaries 169

Fig. 1. Multiple-country path through a hypothetical anonymity network at geograph-
ical and AS level abstractions. Here, despite the path traveling through 3 countries
between Brazil (.br) and the US (.us), there are two tier-1 ISPs which see all links. For
example, the hop through China (.cn) is vulnerable since the incoming and outgoing
links are observed by AS2. At first glance, the Swedish (.se) hop seems secure, as the
incoming link is seen by AS2 and the outgoing by AS1. However, the Swedish ISP
connects to AS1 and AS2 at LINX (IX), opening up the risk of observation there.

offer transit to the full Internet. Thus, connections to and from a far-flung Tor
node are likely to both pass through a single tier-1 ISP, negating the anonymity
benefit against an ISP level adversary. So, while – at the abstraction level of
direct connections – a multi-country path may appear to have location diversity,
by taking into account the ISPs that the data passes through between Tor nodes,
weak points become clear, as shown in Fig. 1.

Instead, Feamster and Dingledine propose, when selecting paths, the rela-
tionship between ISPs carrying data between pairs of Tor nodes is taken into
account. They did this by collecting Border Gateway Protocol (BGP) data,
which controls how packets are routed between entities on the Internet, known
as Autonomous Systems (AS) and roughly correspond to ISPs. From this data,
assumptions about commercial relationships between ISPs, and heuristics about
routing patterns, it is possible to estimate the ASes which will be on each path.

Optimizing path selection to maximize AS diversity reduces the likelihood
that there will be one ISP who can observe the connection though the anonymity
network at enough points to de-anonymize the user. However, although this level
of abstraction is a substantial improvement over the näıve model of direct node
connection, it does not fully take in account all potential monitoring points. This
will be illustrated in the following section.

3 Impact of Internet Exchanges on Physical Topology

In the previous section, we discussed the advantages of selecting paths through
anonymity networks such that there was no single AS which could monitor all
hops between anonymity network nodes. This may be achieved by selecting nodes
on ASes with high-degree i.e. those which are connected to multiple other ASes.
ISPs owning such ASes might purchase cable connections to many other ISPs,

170 S.J. Murdoch and P. Zieliński

but doing so would be extremely expensive. Instead, ISPs may connect their
network to an IX, which will provide connectivity to all other ISPs with a pres-
ence at that IX. This approach is more prevalent in Europe than in the US, due
to differing commercial structures and historical development; also because of
language differences, intra-country traffic is substantial.

Thus, while at the AS level it appears that the path makes multiple transitions
between distinct ASes, physically, each of these connections might pass through
the same IX. Hence, despite the path attaining high AS diversity, there remains
one entity who is able to de-anonymize the traffic. In order to establish how much
of a problem this is for deployed anonymity networks, we set out to determine
how successful an IX level adversary would be, compared to an AS level one, in
de-anonymizing Tor users.

The techniques of Feamster and Dingledine [14] rely on building a map of AS
paths from BGP data, but this is not helpful for our purposes as the IXes do not
appear at this level. From the perspective of a router in an IX, packets travel
directly to the destination AS. Furthermore, their approach depends on informa-
tion about ISP relationships and routing policies which are a carefully guarded
secret and so must be guessed. However, it is common practice to allocate each
router in an IX an IP address from a single subnet.

Hence, while the AS path of a connection will not reveal whether it is going
through an IX, a traceroute [15] is likely to. Unlike finding AS paths, collecting
traceroute data requires access to the system at both ends of the path. As Tor
does not currently implement a mechanism for performing traceroutes, the
operator of the node must do so manually. To limit the effort to a feasible level,
here we take the UK as a case study.

3.1 Experimental Results

Based on geo-location databases and manual investigation, we identified Tor
nodes hosted in the UK and contacted the operators to request that they run
a script to collect data to validate our hypothesis. One of our constraints was
that no custom binary applications could be used, as the recipient could not
easily confirm they were benign. Instead, we simply invoked the OS provided
traceroute (or on Windows, tracert). These are not designed with speed or
parallelism in mind, so to keep the runtime reasonable (2–24 hours, depending on
timeouts) on the slower Windows test machines we only traced 140 destinations,
and on *nix machines, tested 595 destinations. These destinations consisted of
the same 15 websites and 11 US consumer ISPs tested in [14] and the remainder
were randomly selected Tor nodes.

We received 19 (14 *nix, 5 Windows) responses from the 33 operators we
were able to contact. This totaled 9 025 paths with an average path length of 14
hops (excluding failed responses). For each hop we established whether it was in
one of the subnets of LINX (London InterNet eXchange), AMS-IX (AMSterdam
Internet eXchange) or DE-CIX (the German Internet exchange, in Frankfurt).
Also, using the Team Cymru Database [16], we established the BGP origin AS
for each IP address. Note that although we are arranging data by AS, this path

Sampled Traffic Analysis by Internet-Exchange-Level Adversaries 171

Table 1. Number of paths passing through ASes and IXes

AS name (ASN) Paths %

Level 3 (3356) 1 961 22%
NTL (5089) 1 445 16%
Zen (13037) 1 258 14%
JANET (786) 1 224 14%
Datahop (6908) 996 11%
Tiscali (3257) 953 11%
Sprint (1239) 935 10%
Cogent (174) 871 10%
Telewest (5462) 698 8%
Telia (1299) 697 8%

IX name (subnet) Paths %

LINX (195.66.224.0/22) 2 392 27%
DE-CIX (80.81.192.0/22) 231 3%
AMS-IX (195.69.144.0/22) 202 2%

is not the same as the BGP path discussed in [14]. Importantly, while IXes may
have an AS, they do not broadcast routes, and so do not appear in BGP paths,
whereas traceroute establishes the IP address of the border routers, from which
the IX can be inferred.

The results are summarized in Table 1. As can be seen, Level 3, a large tier-1
ISP appears at least once on 22% of paths and other tier-1 ISPs, such as Tiscali,
Sprint, Cogent and Telia also appear. Since our tests were all from UK Tor nodes,
mainly run by volunteers, consumer ISPs also feature, such as NTL, Zen and
Telewest, as does the UK academic network operator, JANET. Finally, Datahop,
who provide connectivity between 10 data-centers in London, are present on 11%
of paths. This broadly matches the results of [14], in that a small number of ISPs
are present many paths.

However, if we now examine whether an IX is on the path, we find a new class
of observation points. Despite being invisible at the BGP level, LINX is present
on 27% of paths. There are 22 distinct ASes in the previous hop to LINX and
109 following the LINX hop, so AS-diverse paths will not substantially impact
LINX crossings. Hence, exploiting the IX as an observation point is an effective
attack against both existing and proposed anonymity network routing schemes.
The connectivity graph of selected ASes, based on our data, is shown in Fig. 2.

4 Traffic Analysis from Sampled Data

The previous section has shown how an adversary positioned at an IX would be
capable of monitoring a substantial quantity of traffic through the Tor network.
A powerful adversary would be in a position to install expensive hardware to
mount conventional traffic analysis attacks but such an adversary would likely be
able to deploy other, more effective, attacks. However, the network infrastructure
provided by an IX may already have the traffic analysis capabilities that a more
modest attacker could use.

172 S.J. Murdoch and P. Zieliński

NTL

Source

Level 3Zen

Cogent

JANET Telia

Telewest

Sprint

Tiscali

DatahopDestination

Fig. 2. AS connectivity via IX graph. Only ASes in Table 1 are shown and all sources
and destinations are collapsed to single nodes. Links between ASes which pass through
LINX are shown as solid lines, AMS-IX is shown by dotted lines and DE-CIX by
dashed lines. Paths which go through none of these IXes are omitted. From this we
can see that, in our data, connections through Sprint and Datahop go from source to
destination without passing through any of the IXes we have selected.

To aid network management, high-end switches and routers have monitoring
features which, although not designed for this purpose, may still be effective in
tracing users of anonymity networks. This section will evaluate the suitability of
network monitoring data for traffic analysis.

4.1 Traffic Monitoring in High-Speed Networks

On low-bandwidth small-office or business networks, full packet analysis tools
such as tcpdump [17] are adequate to monitor traffic for debugging or to measure
load. However, on links found on high-speed networks, the capacity required to
store all packets rapidly becomes infeasible. For example, at time of writing, both
LINX and AMS-IX carry approximately 150Gb/s, which exceeds the theoretical
maximum capacity of the high-speed PCIe bus, 64Gb/s (32 lanes at 2Gb/s
each). Despite these difficulties, there is high demand for monitoring of such
high-speed links, to detect problems such as routing loops, balance load across
network infrastructure and anticipate future demands on capacity.

These applications do not rely on packet content, and for privacy reasons it
may be desirable not to record this at all. Thus, medium to high-end networking
equipment is commonly equipped with the ability to record aggregate data on
the traffic passing through it. One such mechanism is NetFlow [18], developed
by Cisco Systems but supported by other equipment manufacturers. NetFlow
equipped infrastructure records unidirectional flows as defined by a tuple (source
IP, destination IP, source port, destination port, IP protocol, interface, class of
service). For each of these, the device will record information such as the number
of packets, total byte count and bitwise-or of TCP flags.

Sampled Traffic Analysis by Internet-Exchange-Level Adversaries 173

A disadvantage of this approach is that it requires the network hardware to in-
spect every packet flowing through it. This can incur substantial load at higher
network speeds, so to counter this difficulty sampled NetFlow only inspects a
proportion q of packets. While sampling reduces CPU load, the network hard-
ware must still store state for every flow it considers to be live, which could
potentially be very large. An alternative, as adopted by sFlow [19], is to move
the aggregation out of the network device by immediately exporting sampled
packet headers. This approach also gives access to additional fields in packet
headers, such as the sequence number, which could be useful for traffic analy-
sis. However, to ensure generality, we will concentrate on information available
in sampled NetFlow style data, which could be constructed from sFlow logs if
needed (the converse is not true).

Not only is high-speed traffic monitoring possible with standard networking
equipment, but it is common practice to do so. Two examples which are particu-
larly relevant to this paper are that AMS-IX record data for traffic management
monitoring [20] and LINX (who record 1 in 2 048 packets [21]) additionally are
considering using sFlow data for detecting email spam [22]. The same data could
also assist tracking users of an anonymity network because Section 3.1 showed
that a significant number of Tor flows pass through an IX. In the following
section we will examine how successful this type of traffic analysis would be.

4.2 Traffic Analysis Assumptions

There are two basic types of traffic analysis. The first treats the anonymity
network as a “black-box” and only inspects traffic entering and leaving the net-
work. The second approach additionally examines flows within the network, and
so improves the accuracy of the attack. In this paper, we will concentrate on the
former category. As this does not make any assumptions about the structure of
the network, it is the more general approach. However, the techniques we present
here could also be applied to the latter category of attacks, as intra-network Tor
traffic will also often cross a small number of Internet exchanges.

We assume that the attacked flow passes through an attacker controlled IX
on both its path into and out of the anonymity network. This would be the
case if, for example, both the customer and site are hosted on ISPs whose back-
bone connection was through an IX under surveillance. Also, we assume that
packet sampling is independently and identically distributed over the flow. Al-
though some models of network hardware implement periodic sampling, rather
than random, this assumption will remain true because Tor traffic makes up an
insignificant proportion of overall traffic.

The attacker observes a single flow going into the network and wishes to
establish which of several outgoing flows it corresponds to. This could be, for
example, finding which website a known criminal is uploading stolen data to.
Alternatively, the attacker might wish to discover who has uploaded a particular
video to a news website – now there is one outgoing flow and many incoming
candidates. In both cases, the attacker will have a number of candidates in mind
who are also generating traffic at the same time, and for our simulation we

174 S.J. Murdoch and P. Zieliński

assume that these produce around 1 000 flows per hour. We also assume that
the adversary can distinguish Tor traffic from other traffic, which may trivially
done by IP address and port number, based on information in the Tor directory.

5 Mathematical Analysis

5.1 Model

Our model consists of n client-server flows. Each flow p = p1, . . . , pm is a col-
lection of packets sent at times t1, . . . , tm. We model the times as a Poisson
process with a start time s, duration l, and rate r (average packets per second).
These three parameters are chosen independently at random for each flow.

Neither s, l, r nor the flow p are directly observable. The attacker sees a
down-sampled version of p, in which each packet is retained independently with
a fixed probability q, called a sampling rate (typically about 1/2 000). Each flow
is sampled at the input and at the output, resulting in two vectors of times: x
and y. Given a flow p, the sampling processes p → x and p → y are independent:

s, l, r
Poisson−→ p x

sampling←− p
sampling−→ y (1)

In an n-flow system, the attacker sees all n output vectors y1, . . . , yn, and
one input vector x, which corresponds to some yk. The task of the attacker is
to compute the probability P (Tk) that x corresponds to yk, for each k.

To simplify the model, we assume that no packet from p appears simultane-
ously in both x and y. Since x and y are independently sampled from p, a given
packet from p appears in both x and y with the probability of q2 = 2.5 · 10−7,
that is, once every 1/q2 = 4·106 packets (≈ 2GB). Seeing the same packet on the
input and the output is thus very unlikely, which prevents packet-matching at-
tacks [9] and makes independent random delays of individual packets practically
unobservable in the sampled data. For simplicity, we therefore assume instanta-
neous packet transmission. Section 5.5 shows that introducing a moderate delay
to the system does not change the effectiveness of our attack.

The assumption of no common packets in x and y allows us to simplify (1)
by observing that x and y are now independent Poisson processes with rate rq.

x
Poisson←− s, l, rq

Poisson−→ y (2)

This simplification eliminates the original (unobservable) flow p from the model.

5.2 Basic Solution

Let Tk denote the event in which input x and output yk belong to the same
flow. In our model, the exact probabilities P (Tk) can be uniquely determined
from Bayes’ formula:

P (Tk|y1..n, x) =
P (y1..n|Tk, x)P (Tk|x)∑
i P (y1..n|Ti, x)P (Ti|x)

. (3)

Sampled Traffic Analysis by Internet-Exchange-Level Adversaries 175

Probabilities P (Tk|x) express our prior information about the target, possibly
based on the sampled input flow x (but not output flow y). For example, we
might know that a particular server k is just more popular than others, or that
it is the only one to regularly receive high-volume traffic and x looks to be high-
volume. For simplicity, in the rest of the analysis, we treat all servers equally;
any prior information can be easily taken into account using (3).

The probabilities P (y1..n|x, Tk) in (3) can be computed as follows:

P (y1..n|x, Tk) = P (yk|x, Tk)
∏

i�=k

P (yi) =
P (yk|x, Tk)

P (yk)

∏

i

P (yi). (4)

Here, we used the fact that output flows yi are independent, and that P (yi|Tk) =
P (yi): the information about input-output connection Tk is only relevant for
statements that involve both inputs and outputs (such as P (yk, x|Tk)).

Since we are only interested in relative probabilities for different k’s, we can
ignore all factors independent of k, such as P (x|Tk) = P (x) or

∏
i P (yi), as they

would cancel out in (3) anyway:

P (Tk|y1..n, x)
(3)∼ P (y1..n|x, Tk)

(4)∼ P (yk|x, Tk)
P (yk)

=
P (yk, x|Tk)

P (x|Tk)P (yk)
∼ P (x, yk|Tk)

P (yk)
.

(5)
We therefore need to compute P (yk) and P (x, yk|Tk). We are dealing with

a single flow x ← p → yk, so – to avoid notational clutter – we will drop the
explicit index k and assumption Tk from our formulae. In the new notation, we
have P (y) and P (x, y), which can be computed from appropriate conditional
probabilities by integrating out the unknown parameters s, l, r:

P (y) =
∫

s,l,r

P (y|s, l, r)P (s, l, r). (6)

P (x, y) =
∫

s,l,r

P (x, y|s, l, r)P (s, l, r) =
∫

s,l,r

P (x|s, l, r)P (y|s, l, r)P (s, l, r). (7)

The last equality holds because x and y, generated by model (2), are independent
given s, l, r. The distribution P (s, l, r) expresses our prior knowledge about flow
starting times, durations, and rates.

We divide the interval [s, s + l] into infinitesimally small windows of size dt.
Since y is a Poisson process (2), the probability of observing a single packet in
one such window is rq dt. The probability of no packets in [s, s+ l] is e−rql. Thus,

P (y|s, l, r) =

{
e−rql(rq dt)ny if all times in y ∈ [s, s + l],
0 otherwise.

(8)

Here, ny is the number of packets in y. The same formula (with nx) holds for
P (x|s, l, r). Since P (x, y|s, l, r) = P (x|s, l, r)P (y|s, l, r), we also have

P (x, y|s, l, r) =

{
e−2rql(rq dt)nx+ny if all times in x, y ∈ [s, s + l],
0 otherwise.

(9)

176 S.J. Murdoch and P. Zieliński

5.3 Long-Lived Flows

We first consider a simplified model, in which all flows start at the same known
time s and have the same known duration l (basically, [s, s+ l] is our observation
window). The only factor distinguishing the flows is their (unknown) rate r.
From (8), we get:

P (y) =
∫

r

P (y|r)P (r) =
∫

r

e−rql(rq dt)nyP (r). (10)

where P (r) is our prior information about the rate r. Since r is a positive param-
eter, we express our complete lack of prior knowledge by using the scale-invariant
Jeffrey’s ignorance prior P (r) ∼ r−1 dr [23]. This basically says that log r is dis-
tributed uniformly: the probability of r ∈ [a, b] is proportional to log(b/a). For
example, r ∈ [1, 10] and r ∈ [10, 100] have the same probability.

P (y)
(10)
=

∫

r

(rq dt)nye−rqlP (r) = (q dt)ny

∫ ∞

r=0
rny−1e−rql dr =

dtny

lny
Γ (ny).

(11)
We used

∫ ∞
0 za−1e−bz dz = Γ (a)/ba; for integer n we have Γ (n) = (n − 1)!.

Similarly, from (9),

P (x, y) =
∫

r

(rq dt)nx+nye−2rqlP (r) =
dtnx+ny

(2l)nx+ny
Γ (nx + ny). (12)

We can now use (5) to compute the final probability:

P (Tk|y1..n, x) ∼ P (x, yk|Tk)
P (yk)

=
dtnx

(2l)nx
· Γ (nx + nyk

)
2nyk Γ (nyk

)
∼ Γ (nx + nyk

)
2nyk Γ (nyk

)
. (13)

Interpretation. Fig. 3(a) shows a normalized plot of (13) for nx = 5 as a
function of ny. The maximum probability is assigned to ny ≈ nx, when the
numbers of observed packets on the input and on the output are similar. This
confirms our intuition and also yields quantitative probabilities for different ny’s,
which can be used for combining evidence from multiple observations.

The exact maximum occurs for ny > nx because the prior P (r) ∼ r−1 dr
causes P (r ∈ [4, 5]) > P (r ∈ [5, 6]) (because 5

4 > 6
5). This makes small ny’s

more probable to be produced by chance than larger ones, decreasing their match
probability. Using Stirling’s approximation of n!, we get (see appendix):

P (Tk|y1..n, x) ∼ (nx + ny − 1)nx+ny− 1
2

2ny(ny − 1)ny− 1
2

, (14)

which very closely matches the original, as shown in Fig. 3(a). The maximum of
(14), obtained by comparing its derivative to zero, is ny ≈ nx + 1

2 .

Sampled Traffic Analysis by Internet-Exchange-Level Adversaries 177

ny

P
(T

k
| x

,y
1.

.n
)

0 2 4 6 8 10 12 14

0
real (13)
approx (14)

(a) P (Tk|x, y1..n) given by (13) for fixed
nx = 5 and ny ranging from 0 to 15.

miny

m
ax

y

−25 −20 −15 −10 −5 0 5 10 15

−
5

0
5

10
15

20
25

30
35

(18)

(b) log P (Tk|x, y1..n) given by (18) for
nx = ny = 5, min x = 0, max x = 10,
and variable min y and max y.

Fig. 3. Relative probabilities based on (a) observed packet counts and (b) lengths

5.4 General Flows

Now, we consider the general case, in which flows have different (unknown) du-
rations l and starting times s. From (8), we can compute P (y|l, r) by integrating
s out. For a given duration l, the possible starting times s belong to the interval
[maxy − l, miny]. If ly = maxy − min y is the observed length of y, then this
interval of possible values of s has the length (l−ly)0 = max{l−ly, 0}. Assuming
lack of prior knowledge about s (uniform prior P (s) ∼ ds), we have

P (y|l, r) =
∫

s

P (y|s, l, r)P (s)
(8)∼ (l − ly)0e−rql(rq dt)ny . (15)

Using Jeffrey’s priors P (l) ∼ l−1 dl and P (r) ∼ r−1 dr, we get:

P (y) =
∫

l,r

P (y|l, r)P (l, r) =
∫

l,r

(l − ly)0e−rql(rq dt)ny l−1r−1 dr dl =

(q dt)ny

∫

l

(l − ly)0l−1
∫

r

e−rqlrny−1 dr dl =

(q dt)ny

∫

l

(l − ly)0l−1Γ (ny)(ql)−ny dl =

dtnyΓ (ny)
∫ ∞

l=ly

(l − ly)l−ny−1 dl = dtnyΓ (ny)
l
−ny+1
y

ny(ny − 1)
. (16)

We can compute P (x, y) in a similar way. Let nxy = nx+ny be the total num-
ber of packets in x and y, and lxy = max{maxx, maxy} − min{minx, min y}

178 S.J. Murdoch and P. Zieliński

the observed length of superimposed sequences x and y. In general, lxy �= lx+ly.

P (x, y) =
∫

l,r

(l − lxy)0e−2rql(rq dt)nxy l−1r−1 dr dl =

Γ (nxy) dtnxy

2nxy (nxy)(nxy − 1)lnxy−1
xy

. (17)

Ignoring all factors independent of k, (5) gives us the final probability

P (Tk|x, y1..n) =
P (x, yk|Tk)

P (yk)
∼ Γ (nxyk

)
2nxyk Γ (nyk

)
· nyk

(nyk
− 1)

nxyk
(nxyk

− 1)
· l

nyk
−1

yk

l
nxyk

−1
xyk

. (18)

Interpretation. Formula (18) consists of three factors: (i) the rate formula
(13), (ii) a rate-dependent correction ny(ny − 1)/(nxy(nxy − 1)), and (iii) the
length-dependent factor l

ny−1
y /l

nxy−1
xy , which is of the most interest to us here.

Consider matching an input flow with the observed starting time minx = 0,
ending time maxx = 10, and nx = 5 observed packets, against output flows y
with the same number of observed packets ny = 5. For various starting and end-
ing times min y and max y, Fig. 3(b) presents the matching likelihood assigned
by (18) (since nx and ny are constant, so are the first two factors).

As expected, the maximum is attained when the observed starting and ending
times of both flows coincide: minx = min y = 0 and maxx = max y = 10. Each
contour line consists of two parallel straight lines joined by two curves. The two
straight lines correspond to the observed input flow period completely containing
the observed output flow period, and vice versa.

Optimality. The derivation of (18) is strictly Bayesian, so – given the model
assumptions – the result is exact and uses all relevant information. Note that,
despite the timings of all packets being available through x and y, formula (18)
uses only the total packet counts (ny, nxy) and the observed lengths (ly, lxy).
This shows that the exact timings of individual packets (used by timing-based
attacks) are irrelevant for the inference in our model.

5.5 Evaluation

To evaluate the effectiveness of our method in attacking an individual Tor node,
we first collected real traffic distributions of observed flow rates and durations
(Fig. 4). Then, we performed a number of simulations of a 120min execution of a
node. Flow durations (1–30min) and rates (0.1–50packets/s) were drawn from
the log-uniform (P (z) ∼ z−1 dz) prior, consistent with Fig. 4. Starting times
were selected uniformly from the interval [0, 120 min − l].

Our scoring method was “1” if the highest probability was assigned to the
correct target, and “0” otherwise (if i > 1 targets shared the top probability,
then the score was 1/i instead of 1). For each simulation, we applied the attack
independently to each input, and then averaged the results.

Sampled Traffic Analysis by Internet-Exchange-Level Adversaries 179

50 100 200 500 1000 2000

0.
02

0.
10

0.
50

2.
00

10
.0

0
50

.0
0

Flow duration (s)

R
at

e
(p

ac
ke

ts
/s

)

Fig. 4. Distribution of observed rates and flow durations on a single Tor node. Only
flows that completed the three-way TCP handshake, at least 1 minute long, and consist
of at least 5 packets are shown. Flows are closed after being idle for 1 minute.

We varied the following parameters: the number of flows per hour (50–1 000),
the sampling rate q (1/100–1/2000), the mean network latency (0–10min), and
the attack method. Our parameter ranges are consistent with their real values:
our Tor node transmitted 479 flows/h on average, the average Tor network la-
tency was 0.5 s, and the current typical sampling rate is 1/2 048, but may increase
in the future. The results of our simulations are summarized in Fig. 5.

Average number of flows. Fig. 5(a) confirms that more flows provide more pro-
tection. For a typical number of 500 flows/h, the attack had a 50% chance of
success when the target sends ≈ 20 000 packets, that is ≈ 10MB of data. With
50 flows/h, the same success rate required only 7 000 packets (3.5 MB).

Sampling rate. Fig. 5(b) suggests that the effectiveness of the attack depends
only on the number of sampled packets, so doubling the sampling rate is equiva-
lent to doubling the number of transmitted packets. For the technically feasible
sampling rate of 1/100, a success rate of 50% required only 1 000 transmitted
packets (500 kB).

Attack methods. We compared the following attacks: (i) rate attack, which ap-
plies (13), taking into account the observed number of packets and ignoring
packet times; (ii) rate+overlap attack, which additionally ignores outputs with
observed packet timings disjoint with the input; (iii) length attack, which selects
the output y with the highest ratio ly/lxy; (iv) full attack, which uses (18).

180 S.J. Murdoch and P. Zieliński

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) variable flows/hour

transmitted packets

P
(c

or
re

ct
 ta

rg
et

)

10 100 1,000 10,000 100,000

50 flows/h
100 flows/h
250 flows/h
500 flows/h
1000 flows/h

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) variable sampling rate

transmitted packets

P
(c

or
re

ct
 ta

rg
et

)

10 100 1,000 10,000 100,000

1 per 100
1 per 200
1 per 500
1 per 1000
1 per 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) variable attack method

transmitted packets

P
(c

or
re

ct
 ta

rg
et

)

10 100 1,000 10,000 100,000

full attack
durations
rate+overlap
rate only

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) variable delay

transmitted packets

P
(c

or
re

ct
 ta

rg
et

)

10 100 1,000 10,000 100,000

no delay
30 s
1 min
2 min
5 min

Fig. 5. Simulation results: the probability of choosing the correct target, as a function
of the number of transmitted packets, for varying numbers of flows/hour (default 1 000),
sampling rate (1/2 000, except (c)), attack method (full attack), and delay (0)

Fig. 5(c) shows the effectiveness of these four methods in a system with a
sampling rate of 1/100. The combined rate and length information (18) resulted
in a 50% success rate for ≈ 1 000 packets (10 sampled). In comparison, taking
only one factor (rate or length) into account, required 100 times more packets
to achieve the same accuracy.

Delays. Fig. 5(d) shows the effects of introducing an exponentially distributed
random delay to the system. The effectiveness of our attack stayed approximately
the same for delays up to 30 s, and then started to deteriorate, reaching the 0%
level for a 5min delay. Note, however, that our attack explicitly assumes no delay
whatsoever, therefore this result does not mean that a 5-minute random delay
safeguards against all sampling attacks.

6 Future Work

For simplicity, we ignored several phenomena that occur in practice, such as
different sampling rates and how Tor cells are split over IP packets. Generalizing

Sampled Traffic Analysis by Internet-Exchange-Level Adversaries 181

our analysis to support different known sampling rates at input and output seems
straightforward (but an attack by a single adversary with a fixed sampling rate
is most likely). Similarly, the effect of packet splitting by Tor nodes seems to
be statistically equivalent to different sampling rates. Our analysis could also
be modified to take TCP sequence numbers, available from sFlow records, into
account, to give more accurate rate calculation.

As reasonable random delays do not protect against our attack, we plan to
examine other defenses, such as a moderate amount of dummy traffic. We would
also like to measure the effectiveness of our attack against real systems, using
an empirically determined prior distribution on durations and rates, for both
the analysis (numerical integration required) and the evaluation. Ideally, such
an evaluation should be performed for the entire Tor system, with its average 1
million flows per hour.

Furthermore, we are considering how intra-network traffic analysis could be
performed. Similar techniques could be used, and are likely to work better than
whole-network analysis since the number of flows will be smaller. However, there
are complications which must be considered, in particular that multiple flows
between the same pair of Tor nodes may be multiplexed within one encrypted
TLS tunnel. An improved analysis would take this possibility into account and
empirical studies would show to what extent this interferes with analysis.

7 Conclusion

We have demonstrated that Internet exchanges are a viable, and previously
unexamined, monitoring point for traffic analysis purposes. They are present on
many paths through our sample of the Tor network, even where BGP data would
not detect any common points of failure. Furthermore, Internet exchanges are
particularly relevant as in some cases they may record, and potentially retain
data adequate to perform traffic analysis.

To validate to what extent this was true, we developed traffic analysis tech-
niques which work on the sampled data which is being collected in practice by
Internet exchanges. Using a Bayesian approach, we obtained the best possible
inference, which means that we can not only attack vulnerable systems, but also
declare others as safe under our threat model. Our probability formula is difficult
to obtain by trial-and-error, and – as we show – can give orders of magnitude
better results than simple intuitive schemes.

We also show that exact “internal” packet timings are irrelevant for optimum
inference, so timing-based attacks cannot work with sparsely sampled data. For
the same reason, deliberate random packet delays do not protect low-latency
anonymity systems against our attack, as the minimum sensible latency (1 min)
is unacceptable for web browsing and similar activities.

Acknowledgments. We thank Richard Clayton, Chris Hall, Markus Kuhn,
Andrei Serjantov and the anonymous reviewers for productive comments, and
also the Tor node operators who collected the data used in this paper.

182 S.J. Murdoch and P. Zieliński

References

1. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: Design of a Type III
Anonymous Remailer Protocol. In: Proceedings of the 2003 IEEE Symposium on
Security and Privacy, IEEE Computer Society Press, Los Alamitos (2003)

2. Möller, U., Cottrell, L., Palfrader, P., Sassaman, L.: Mixmaster Protocol – Version
2. Draft (2003)

3. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium (2004)

4. Berthold, O., Federrath, H., Köpsell, S.: Web MIXes: A system for anonymous and
unobservable Internet access. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 115–129. Springer, Heidelberg (2001)

5. Boucher, P., Shostack, A., Goldberg, I.: Freedom systems 2.0 architecture. White
paper, Zero Knowledge Systems, Inc. (2000)

6. Serjantov, A., Murdoch, S.J.: Message splitting against the partial adversary. In:
Danezis, G., Martin, D. (eds.) PET 2005. LNCS, vol. 3856, Springer, Heidelberg
(2006)

7. Serjantov, A., Sewell, P.: Passive attack analysis for connection-based anonymity
systems. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808,
Springer, Heidelberg (2003)

8. Levine, B.N., Reiter, M.K., Wang, C., Wright, M.K.: Timing attacks in low-latency
mix-based systems. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, Springer, Heidel-
berg (2004)

9. Danezis, G.: The traffic analysis of continuous-time mixes. In: Martin, D., Serjan-
tov, A. (eds.) PET 2004. LNCS, vol. 3424, Springer, Heidelberg (2005)

10. Dai, W.: Pipenet 1.1. Post to Cypherpunks mailing list (1998),
http://www.eskimo.com/∼weidai/pipenet.txt

11. Øverlier, L., Syverson, P.: Locating hidden servers. In: Proceedings of the 2006
IEEE Symposium on Security and Privacy, IEEE CS, Los Alamitos (2006)

12. Bauer, K., McCoy, D., Grunwald, D., Kohno, T., Sicker, D.: Low-resource routing
attacks against anonymous systems. Technical Report CU-CS-1025-07, University
of Colorado at Boulder (2007)

13. Acquisti, A., Dingledine, R., Syverson, P.: On the Economics of Anonymity. In:
Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, Springer, Heidelberg (2003)

14. Feamster, N., Dingledine, R.: Location diversity in anonymity networks. In: Pro-
ceedings of the Workshop on Privacy in the Electronic Society (WPES 2004),
Washington, DC, USA (2004)

15. Jacobson, V.: Traceroute (1) (1987), ftp://ftp.ee.lbl.gov/traceroute.tar.gz
16. Team Cymru: IP to ASN lookup (v1.0), http://asn.cymru.com/
17. Jacobson, V., Leres, C., McCanne, S.: Tcpdump (1) (1989),

http://www.tcpdump.org/
18. Claise, B.: Cisco systems NetFlow services export version 9. RFC 3954, IETF

(2004)

19. Phaal, P., Panchen, S., McKee, N.: InMon corporation’s sFlow: A method for
monitoring traffic in switched and routed networks. RFC 3176, IETF (2001)

20. Jasinska, E.: sFlow – I can feel your traffic. In: 23C3: 23rd Chaos Communication
Congress (2006),
http://events.ccc.de/congress/2006/Fahrplan/attachments/
1137-sFlowPaper.pdf

http://www.eskimo.com/~weidai/pipenet.txt
ftp://ftp.ee.lbl.gov/traceroute.tar.gz
http://asn.cymru.com/
http://www.tcpdump.org/
http://events.ccc.de/congress/2006/Fahrplan/attachments/1137-sFlowPaper.pdf
http://events.ccc.de/congress/2006/Fahrplan/attachments/1137-sFlowPaper.pdf

Sampled Traffic Analysis by Internet-Exchange-Level Adversaries 183

21. Hughes, M.: LINX news (2006),
http://www.uknof.org.uk/uknof4/Hughes-LINX.pdf

22. Clayton, R.: spamHINTS project (2006), http://www.spamhints.org/
23. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University

Press, Cambridge (2003)

A Appendix

Theorem 1. Formula (13) attains maximum for ny ≈ nx + 1
2 .

Proof. Stirling’s factorial approximation gives us

n! ≈
(n

e

)n √
2πn.

Denoting a = nx, b = ny, and c = a + b, we have:

P (Tk|y1..n, x) ∼ Γ (a + b)
2bΓ (b)

=
(c − 1)!

2b(b − 1)!
≈

(
c−1

e

)c−1 √
2π(c − 1)

2b
(

b−1
e

)b−1 √
2π(b − 1)

∼

(c − 1)c− 1
2

2b(b − 1)b−
1
2

= X. (19)

Instead of finding the maximum of X , it is easier to find the maximum of
log X :

log X = (c − 1
2) log(c − 1) − b log 2 − (b − 1

2) log(b − 1). (20)

We can find the maximum of log X by differentiating it w.r.t. b, and remem-
bering that c′ = (a + b)′ = 1:

(log X)′ = log(c − 1) +
c − 1

2

c − 1
− log 2 − log(b − 1) −

b − 1
2

b − 1

= log(c − 1) +
1

2(c − 1)
− log 2 − log(b − 1) − 1

2(b − 1)

≈ log(c − 1
2) − log 2 − log(b − 1

2) = log
(

c − 1
2

2b − 1

)
.

(21)

Now, (log X)′ = 0 implies c − 1
2 = 2b − 1, which implies b = a + 1

2 , that is
ny = nx + 1

2 .

http://www.uknof.org.uk/uknof4/Hughes-LINX.pdf
http://www.spamhints.org/

Browser-Based Attacks on Tor

Timothy G. Abbott, Katherine J. Lai, Michael R. Lieberman, and Eric C. Price

{tabbott,k lai,mathmike,ecprice}@mit.edu

Abstract. This paper describes a new attack on the anonymity of web
browsing with Tor. The attack tricks a user’s web browser into sending a
distinctive signal over the Tor network that can be detected using traffic
analysis. It is delivered by a malicious exit node using a man-in-the-
middle attack on HTTP. Both the attack and the traffic analysis can be
performed by an adversary with limited resources. While the attack can
only succeed if the attacker controls one of the victim’s entry guards,
the method reduces the time required for a traffic analysis attack on Tor
from O(nk) to O(n + k), where n is the number of exit nodes and k is
the number of entry guards. This paper presents techniques that exploit
the Tor exit policy system to greatly simplify the traffic analysis. The
fundamental vulnerability exposed by this paper is not specific to Tor
but rather to the problem of anonymous web browsing itself. This paper
also describes a related attack on users who toggle the use of Tor with
the popular Firefox extension Torbutton.

1 Introduction

The Internet was not designed with anonymity in mind; in fact, one of the
original design goals was accountability [3]. Every packet sent by established
protocols identifies both parties. However, most users expect that their Internet
communications are and should remain anonymous. As was recently highlighted
by the uproar over AOL’s release of a large body of “anonymized” search query
data [10], this disparity violates the security principle that systems meet the secu-
rity expectations of their users. Some countries have taken a policy of arresting
people for expressing dissident opinions on the Internet. Anonymity prevents
these opinions from being traced back to their originators, increasing freedom of
speech.

For applications that can tolerate high latencies, such as electronic mail, there
are systems that achieve nearly perfect anonymity [1]. Such anonymity is difficult
to achieve with low latency systems such as web browsing, however, because of
the conflict between preventing traffic analysis on the flow of packets through
the network and delivering packets in an efficient and timely fashion.

Because of the obvious importance of the problem, there has been a great deal
of recent research on low-latency anonymity systems. Tor, the second-generation
onion router, is the largest anonymity network in existence today.

In this paper we describe a new scheme for executing a practical timing attack
on browsing the web anonymously with Tor. Using this attack, an adversary can

N. Borisov and P. Golle (Eds.): PET 2007, LNCS 4776, pp. 184–199, 2007.

Browser-Based Attacks on Tor 185

identify a fraction of the Tor users who use a malicious exit node and then leave
a browser window open for an hour. With current entry guard implementations,
the attack requires the adversary to control only a single Tor server in order
to identify as much as 0.4% of Tor users targeted by the malicious node (and
this probability can be increased roughly linearly by adding more machines).
The targeting can be done based on the potential victim’s HTTP traffic (so, for
example, one could eventually identify 0.4% of Tor users who read Slashdot).

2 How Tor Works

Tor [5] is an anonymizing protocol that uses onion routing to hide the source of
TCP traffic. Onion routing is a scheme based on layered encryption, which was
first developed for anonymizing electronic mail [1]. As of December 15, 2006, Tor
was used by approximately 200,000 users and contained about 750 nodes (also
sometimes referred to as “servers” or “routers”) [4].

Fig. 1. A Tor circuit. The client chooses an entry node, a middle node, and an exit
node, allowing the exit node to fetch content from a web server.

In Tor, a client routes his traffic through a chain of three nodes that he
selects from the Tor network, as shown in Figure 1. A client constructs this path
of nodes, or “circuit”, by performing Diffie-Hellman handshakes with each of
the nodes to exchange symmetric keys for encryption and decryption. These Tor
nodes are picked from a list of current servers that are published by a signed
directory service.1 To send TCP data through the circuit, the client starts by
breaking the stream into fixed sized cells that are successively encrypted with

1 While the directory service is signed, anyone can add an entry, and claim to have a
long uptime and high bandwidth. This makes getting users to use a malicious node
a little easier, because clients prefer to use servers with good statistics.

186 T.G. Abbott et al.

the keys that have been negotiated with each of the nodes in the path, starting
with the exit node’s key and ending with the entry node’s key. Fixed size cells
are important so that anyone reading the encrypted traffic cannot use cell size
to help identify a client [7][9].

Using this protocol, the entry node is the only node that is told the client’s
identity, the exit node is the only node that is told the destination’s identity and
the actual TCP data sent, and the middle node simply exchanges encrypted cells
between the entry node and the exit node along a particular circuit. The nodes
are selected approximately randomly using an algorithm dependent on various
Tor node statistics distributed by the directory server, some client history, and
client preferences.

3 Related Work

In May 2006, S. Murdoch and G. Danezis discussed how a website can include
“traffic analysis bugs”—invisible signal generators which are used to shape traffic
in the Tor network [11]. Our attack uses similar signal generators to attack a
Tor client. We rely on the ideas of the papers discussed in the next two sections
to deliver the attack and to identify the Tor client.

3.1 Browser Attacks

To browse the Internet anonymously using Tor, a user must use an HTTP proxy
such as Privoxy so that traffic will be diverted through Tor rather than sent
directly over the Internet. This is especially important because browsers will not
automatically send DNS queries through a SOCKS proxy. However, pieces of
software that plug into the browser, such as Flash, Java, and ActiveX Controls,
do not necessarily use the browser’s proxy for their network traffic. Thus, when
any of these programs are downloaded and subsequently executed by the web
browser, any Internet connections that the programs make will not go through
Tor first. Instead, they will establish direct TCP connections, compromising the
user’s anonymity, as shown in Figure 2. This attack allows a website to iden-
tify its visitors but does not allow a third party to identify Tor users visiting a
given website. These active content systems are well-known problems in anony-
mous web-browsing, and most anonymizing systems warn users to disable active
content systems in their browsers.

In October 2006, FortConsult Security [2] described how to extend this attack
so that parties could identify Tor users visiting a website they do not control. The
attacker uses a malicious exit node to modify HTTP traffic and thus conduct
a man-in-the-middle attack, as shown in Figure 3. In particular, it inserts an
invisible iframe with a reference to some malicious web server and a unique
cookie. In rendering the page, the web browser will make a request to the web
server and will retrieve a malicious Flash application. If Flash is enabled in
the browser, then the Flash movie is played invisibly. The Flash application
sends the cookie given to the user directly to the evil web server, circumventing

Browser-Based Attacks on Tor 187

Fig. 2. Prior work: a browser attack using Flash included in a website. The client’s web
browser executes a Flash program, which then opens a direct connection to a logger
machine, compromising the client’s anonymity.

Tor. The web server can then identify which webpages were sent to which users
by matching the cookies with the Flash connections. In other words, all Tor
users who use HTTP through that exit node while Flash is enabled will have
their HTTP traffic associated with their respective IP addresses. However, if we
assume that the number of malicious Tor servers is small compared to the total
number of Tor servers, a normal user will get a malicious exit node only once in a
while. As a result, this attack only works to associate traffic with the particular
user for the length of time that the user keeps the same Tor circuit, or at most
ten minutes by default.

3.2 Finding Hidden Servers

Along with hiding the locations of clients, Tor also supports location-hidden
servers, where the clients of a service (for example, visitors to a website) are not
able to identify the machine hosting the service. To connect to a hidden server,
a client sends a message through an introduction point that is advertised as
being associated with the hidden service by the Tor directory. A clever anony-
mous interaction results in the hidden client and hidden server both opening
Tor connections to a rendezvous point (chosen by the client). The rendezvous
point patches the connections together to form an anonymous channel between
the hidden client and hidden server.

In May 2006, L. Øverlier and P. Syverson [12] described an attack to locate
hidden servers in Tor. The attacker begins by inserting a malicious Tor node into
the Tor network and using a Tor client to repeatedly connect to the targeted
hidden server, sending a distinctive signal over each Tor connection. Since the

188 T.G. Abbott et al.

Fig. 3. Prior work: a browser attack executed by an exit node. The client’s web browser
executes a Flash program inserted into a webpage by the exit node, which opens a direct
connection to a logger machine.

hidden server cannot distinguish this from a wave of legitimate clients, each
connection forces the hidden server to construct a new Tor circuit. The attacker
can do traffic analysis to determine when his Tor node is in the hidden server’s
rendezvous circuit. He can then identify the hidden server by using a predecessor
attack [18].

The paper states that their attack should apply to other clients using an
anonymity network, but gives no details for how to do so. In particular, the attack
does not immediately apply to clients because they don’t make new circuits on
demand. The attack relied on requesting a large number of new connections with
a hidden server, which is not easy to do with a hidden client.

4 A Browser-Based Timing Attack

We describe a new attack that combines and builds upon the attacks discussed in
Section 3. The attack, shown in Figure 4, attempts to discover a Tor client without
using invasive plugins like Java or Flash but with JavaScript instead. JavaScript
alone is not powerful enough to discover the client’s IP address, but combined
with a timing attack similar to the one presented by Øverlier and Syverson [12], an
adversary has a non-trivial chance of discovering a client in a reasonable amount
of time. In Section 4.2 we discuss how to implement this attack using only the
HTML meta refresh tag, but the JavaScript version is simpler so we discuss it first.
This attack is partially mitigated by entry guards, which has become a standard
feature of Tor. For clarity, we will defer discussion of the role of entry guards until
Section 4.7, after we have explained the basic plan of attack.

Browser-Based Attacks on Tor 189

4.1 The Attack

Like the FortConsult Security attack [2], our attack uses a malicious Tor exit
node that modifies HTTP traffic passing through it, inserting an invisible iframe
containing JavaScript into requested webpages. The JavaScript repeatedly con-
tacts a malicious web server, posting a unique ID. This JavaScript continues to
run as long as the client leaves the “bugged” browser tab open. The complete
attack is as follows:

1. The attacker first sets up the necessary resources.
(a) The attacker inserts two malicious nodes into the Tor network: one to

act as an entry node, and the other to act as an exit node.
(b) The attacker sets up a web server that receives and logs JavaScript con-

nections.
2. The malicious exit node modifies all HTTP traffic destined for Tor clients

to include an invisible JavaScript signal generator that generates a unique
signal for each Tor client.

3. The Tor client’s web browser executes the JavaScript code, sending a dis-
tinctive signal to the web server. This traffic passes through the Tor circuit,
and the client is still anonymous.

4. Approximately every ten minutes, the Tor client chooses a new circuit. Even-
tually, an unlucky Tor client picks and uses the malicious entry node.

5. The attacker performs traffic analysis to compare the signals on each circuit
passing through his entry node with the various signals received by the web
server. A match reveals the Tor client’s identity and its corresponding traffic
history during the time it used the malicious exit node.

The entry node only needs to log the traffic pattern that passes through it
on each circuit, and the exit node only needs to perform the code injections in
the HTTP traffic. Although for clarity we described the attack with multiple
machines, the malicious Tor nodes and the web server can all be implemented
on the same machine. If the user is browsing the web while using the malicious
entry node, the traffic analysis can be difficult because the additional traffic
introduces “noise” to the signal. However, if the user stops browsing the web,
the channel contains little “noise” and the traffic analysis is easy. A method for
simplifying the timing attack even if the user does continue browsing the web is
discussed in Section 4.4.

For most traffic analysis attacks, the attacker must control both the exit node
and entry node at the same time. For our attack, if a client leaves a browser
window open running the JavaScript signal generator, and at any later point
chooses a malicious entry node, then the timing attack can reveal his identity.
Since this only requires the right choice of an entry node, the probability that the
client is compromised each time he chooses a new circuit is roughly 1

ne
, where ne

is the number of available entry nodes. If the attacker had to get control of both
the entry and exit nodes at the same time, the probability would then be 1

nenx
,

where nx is the number of available exit nodes. The signal generator allows us to
decouple the need to control an exit node and an entry node at the same time,

190 T.G. Abbott et al.

Fig. 4. Our new attack. A malicious exit node modifies webpages, inserting JavaScript
code that repeatedly connects to a logger server, sending a distinctive signal along the
link (top). If the client then uses a malicious entry node while that JavaScript is still
executing, the entry node can detect the signal, and the attacker can thus associate
the client with his communications (bottom).

decreasing the expected time to compromise the client. As with any such traffic
analysis attack, the adversary can further decrease the time the attack takes by
increasing the number of malicious Tor entry nodes [16].

4.2 A Browser-Based Timing Attack Using Only HTML

The attack we just described relies on the victim having JavaScript enabled. This
requirement is unnecessary. The same attack can be implemented by using the
HTML meta refresh tag. In this version of the attack, the webpage is modified

Browser-Based Attacks on Tor 191

such that it will automatically be refreshed by the web browser after a period
of time. The attacker generates the desired traffic signal by dynamically varying
the refresh delays or the page size each time the webpage is refreshed.

The HTML meta refresh version of the attack is more conspicuous than the
JavaScript version because browsers generally indicate when they are reloading
a webpage but not when executing JavaScript XMLHttpRequests. Thus, it is
easier for the user to observe the meta refresh version of the attack than the
JavaScript one. This could be mitigated by only performing this attack on sites
that already have a meta-refresh tag. Even on pages that would not normally
have the tag, the HTML meta refresh attack could be made less obvious if the
first refresh happens with a large delay, when the user is less likely to be still in
front of his computer. After an initial delay of a few hours, subsequent refreshes
could happen every few seconds to generate the signal for a timing attack.

4.3 Torbutton

Torbutton is a simple Firefox extension that allows a user to toggle whether
their web browser is using the Tor proxy with a single click. This convenient
interface makes it possible for users who are frustrated with Tor’s slow speed to
turn Tor off while browsing websites that they do not feel requires anonymity.
It is a popular extension, with more than 251,000 downloads as of February
22, 2007 [19]. Since this number only counts downloads of Torbutton from the
official website, it underestimates the number of Torbutton users.

As shown in Figure 5, if a user toggles the Tor proxy off using Torbutton but
leaves a tab open with one of our JavaScript signal generators, then he will be
discovered the next time the signal generator contacts the adversary’s server. In
practice, this relatively simple attack is effective at but limited to discovering Tor
clients who stop using the Tor proxy while the browser is still open. Torbutton
makes it easy for users to be careless in this way.

Torbutton could easily be modified such that when the user chooses to stop us-
ing Tor, all JavaScript and automatically reloading webpages are stopped before
changing the proxy settings. This may inconvenience the user if he is using sites
that heavily depend on JavaScript, but it will protect the user from discovery.
A Tor user who wants to browse the web both with and without Tor could also
choose to either completely close his browser between uses or use two completely
separate browsers for anonymous and nonanonymous communications.

4.4 Tor Exit Policies

Our attack works by adding traffic to a Tor circuit so that a Tor node can
identify whether it is, in fact, the entry node of the Tor circuit. If the Tor circuit
is carrying no other traffic, this detection is fairly easy—the entry node knows
exactly what traffic pattern to look for. On the other hand, a Tor circuit full of
unrelated traffic is hard to test for presence of a signal because the entry node
does not know what other traffic to expect. For this reason, it is easier to identify
a victim during a break than during active browsing. In this section we present

192 T.G. Abbott et al.

Fig. 5. Our Torbutton attack. A malicious exit node modifies webpages, inserting
JavaScript code that repeatedly connects to a logger server, sending an ID number
(seen above in dashed lines). If the client later configures their browser to stop using
Tor while that JavaScript is still executing, he will connect directly to the logger server.

a novel method of using exit policies to create a clean circuit dedicated to the
identifying signal.

A common concern among Tor server operators is the issue of abuse: Tor
can be used to anonymously send spam or viruses as well as to anonymously
browse the web. In order to make it more attractive to run a Tor server, Tor’s
protocol dictates that each server advertises an exit policy that specifies which
(IP address, port) pairs the server is willing to exit traffic to. Because few server
operators are willing to exit spam or viruses, there are certain ports that almost
every Tor server refuses to exit, as shown in Figure 6.

Port Number of Exit Nodes

22 211
53 216
80 226
110 210
143 208
443 238
5190 184
6667 172

Port Number of Exit Nodes

25 4
119 25
135–139 6
445 6
465 12
587 13
1214 7
4661–4666 5
6699 9

Fig. 6. Number of Tor servers exiting various ports as of December 15, 2006

Browser-Based Attacks on Tor 193

4.5 Using Tor Exit Policies to Simplify the Timing Attack

Suppose that the signal generator connects to a malicious server over an unpop-
ular port. Most web browsers will refuse to connect to some of the unpopular
ports. For example, Mozilla Firefox resists connecting to the SMTP port 25 but
not the filesharing ports 4661 through 4666. If the signal generator connects over
an unpopular port, the client’s existing circuits probably do not have an exit node
willing to serve the signal generator’s traffic. This likely forces the Tor client to
open a new circuit for the signal generator’s traffic. In fact, the Tor algorithm
for routing traffic over circuits prefers older circuits, so for several minutes, other
traffic may use a different circuit than the signal generator’s traffic, even if the
new exit node is willing to exit other traffic. An attacker can improve the odds
that the attack traffic will have a dedicated circuit by inserting exit nodes into
the network that will only exit unpopular ports. As we have remarked before,
having a dedicated circuit simplifies the traffic analysis substantially.

The Tor exit policy can also be used to decrease the time required for the
attack. Suppose that there were zero nodes willing to exit k different ports.
Then the attacker could insert k different servers into the Tor network, each of
which only exits on one of the k ports. A signal generator that tried to connect
on all k ports would force the Tor client to create k new circuits, each dedicated
to the signal generator’s traffic. Hence the client would have k different entry
nodes at a time, rather than only one. This would speed up the attack by a
factor of k.

In reality, there are no ports that have zero Tor nodes willing to exit on them,
so one would expect a smaller speed increase. Some ports do come close; only
five nodes offer ports 4661 through 4666, and at times only one or two of those
are operating. If an attacker performed a denial of service attack on these nodes,
he could create a situation where these ports do have zero Tor nodes willing to
exit on them, and obtain the full factor of six.

Experiments showed that Tor’s algorithm was slow to open a circuit to these
unpopular ports. It often took several minutes to make a circuit, which can
cause browser timeouts in connecting. While this wouldn’t be a problem with
the JavaScript version of the attack, this error would cause the HTML meta
refresh version to fail sometimes.

We believe that this is the first reported method for exploiting the Tor exit
policy system in an attack. A reasonable solution to this vulnerability would be
to have a client-side exit policy. A client would only send data into Tor destined
for selected ports—requests to send data on other ports would be refused. This
exit policy should default to only allowing the client to send data via Tor that
is destined for popular ports.

4.6 Using TCP Streams to Simplify the Timing Attack

Tor stops sending new connections through a circuit after the first 10 minutes
of using the circuit. However, it does not close a circuit until there are no longer
any open TCP sessions on the circuit. Thus, an attacker can hold a circuit open

194 T.G. Abbott et al.

for more than 10 minutes by maintaining an open TCP stream on the circuit.
After the first 10 minutes have passed, the attacker can start sending a unique
signal to the client using that TCP connection. Unless there are other lingering
TCP connections on the circuit, the attacker’s traffic will now be the only traffic
in that direction on the Tor circuit, allowing the attacker to detect the signal
using simple traffic analysis techniques.

A defense against this attack is to forcibly close all TCP connections on a
circuit after the 10 minutes are up. However, this is perhaps impractical for a
couple of reasons. First, if a client is trying to download something that will take
more than 10 minutes, the download will always fail. Second, various web appli-
cations utilize a perpetually open TCP connection in order to push changes to a
webpage (avoiding the delays associated with polling). Killing TCP connections
when the circuit becomes stale could prove annoying to users.

An attacker that intentionally keeps a TCP connection open for an extended
period of time is difficult to distinguish from the applications that are broken
by the defense we just described. We know of no effective way to defend against
this version of the attack without losing functionality.

4.7 Entry Guards

Our attack relies on the assumption that eventually, one of the malicious Tor
routers will act as the entry node for a client. Since many attacks rely on this
assumption, Wright et al. [17] and later Øverlier and Syverson [12] proposed
selecting the entry nodes from a small subset of Tor nodes called entry guards.
This feature is now standard in Tor [20]. By default, each Tor client chooses
3 random Tor nodes to be its entry guards. Thus if none of the entry guards
are malicious, the client will never have a malicious entry node. If one or more
of them is malicious, the client can be compromised much more quickly than
if this feature were not used. Without entry guards, however, our attack would
eventually expose all clients if there were even one malicious entry node in the
entire Tor network.

Rather than selecting random entry guards, the user can choose a specific set
of trusted nodes. This has benefits and drawbacks, which Øverlier and Syver-
son [12] discuss in detail. We suspect that most users will use the default random
choices, so we will assume that henceforth.

One interesting feature of using entry guards is that a timing attack that
would find the hidden client will instead find the entry guards. After the attacker
identifies the entry guards that a targeted victim is using, he can attempt to
execute a denial of service attack against those Tor servers in order to cause the
victim to fall back to different entry nodes that the attacker might control.

Entry guards change the probability distribution so that the probability that a
malicious server will ever be an entry node for a particular client is O(3

n), where
n is the number of possible entry nodes in the network. On the other hand,
those clients who are unlucky enough to select a malicious router as one of their
entry guards will more quickly be discovered. If, for example, the attack targets
the visitors of a particular website, the attack will affect up to an expected 3

n

Browser-Based Attacks on Tor 195

of the visitors. The use of entry guards then serves to speed up the attack on
that fraction of that population. If we take today’s numbers into account, n is
around 700, one Tor node will be an entry guard for around 0.4% of a targeted
population. Adding more malicious Tor nodes to the network is easy and would
increase that proportion roughly linearly.

5 Methods

We developed a prototype implementation of this attack, expanding on the tech-
niques discussed in the FortConsult Security paper [2]. FortConsult Security’s
attack used Linux’s iptables filtering to modify the payloads of TCP packets
at the exit node. This was a convenient mechanism because it did not require
modifications to the Tor source code itself. However, it resulted in a restriction
on their attack: they could not change the number of bytes in any TCP packet,
because TCP sequence numbers are a byte count. Thus their insertions into the
webpages also required overwriting some part of those webpages. We sidestepped
this issue by changing webpages at the HTTP level.

Our implementation also uses iptables, but only to redirect Tor’s outgoing
HTTP requests to a local port. Transproxy, a transparent proxy daemon, binds
to this port and adds the appropriate headers to the requests so that a regular
HTTP proxy works properly. The requests proceed through a proxy built on
the Twisted Python libraries that modify every webpage to insert an iframe.
This iframe downloads, from the adversary’s web server, a page that contains a
simple (25 line) JavaScript program that connects with this server. The size and
frequency of these connections can be dynamically modified by the adversary’s
server in order to produce a distinctive signal.

Because the connections are to aURLcontaining the unique identifier, the server
can ensure that each JavaScript instance sends a unique signal associated with its
identifier. This allows the entry node to identify the client that downloaded a spe-
cific webpage, rather than one of the clients that downloaded any of the webpages
with inserted signal generators. Not only can the attacker attribute the one web-
page to this client, but he also knows that client was responsible for all the other
traffic sent over its circuit ID at the time that it downloaded the bugged webpage.

When setting up a number of exit nodes to exit ports 4661-4666, we were
able to put them all on one machine simply by configuring each Tor instance to
use and advertise a different port and IP address. Upcoming Tor releases will
not use two routers from the same Class B subnet on a single path, as a weak
defense against the Sybil attack [6]. For our attack, the adversary can simply
run two computers on different Class B networks, one running a large number of
entry nodes, and the other running many exit nodes. Since Tor clients can choose
any pair of routers from different subnets, the changes of selecting both entry
node and exit node from the adversary’s set will still be quadratic in the number
of fake routers being used. Since colocation is easily available commercially, we
do not believe that this new feature will present an effective defense against a
determined attacker with limited resources.

196 T.G. Abbott et al.

Our experimental entry node required minor modifications of the Tor source
to increase logging, most of which were used in Øverlier and Syverson [12]. We
tried a Fourier transform to identify circuits with the signal, but could not find a
strong enough signal (past the noise of legitimate web traffic) to identify them if
they were browsing the web. We then implemented a much simpler recognition
system that could find users when their circuit was only carrying attack traffic.

6 Defenses Against Browser-Based Attacks

We have considered a few defenses against these browser-based attacks.

6.1 Disabling Active Content Systems

The most obvious defense against these browser-based attacks is to disable all
active content systems, such as Java, Flash, ActiveX Controls, and JavaScript
in the browser. The disadvantage of this defense, however, is that disabling the
active content systems would preclude the use of many popular web services in
the process. Our HTML-only attack using the meta refresh tag also shows that
this only exacerbates the problem since it can’t be turned off without significant
modification to a web browser.

6.2 HTTPS

Modifying a website at the exit node is a man-in-the-middle attack on HTTP.
Because HTTPS is secure against man-in-the-middle attacks (assuming that the
user has a chain of trust to the website), tunneling HTTP over SSL prevents a
malicious exit node from either reading or modifying the data it is transporting.

In practice, this defense is less effective than it might seem, because users
will often accept self-signed certificates as valid despite the browser warning. A
malicious exit node could thus trick careless users by replacing webpages with
malicious versions that are also signed, but with forged certificates.

Using HTTPS provides reasonable security against this attack so long as the
client can trust the servers serving the sites he visits and correctly verifies cer-
tificates. If the server is not trustworthy, it can include the malicious JavaScript
attack code in the website itself, and sign it with a valid SSL certificate. Using
the methods we have described, the server could then identify its visitors.

Unfortunately, this defense is not something a Tor client can implement uni-
laterally; every website that he visits must allow the client to do so. Many
sites do not allow a user to communicate with them in a secure fashion; for
example, https://www.google.com currently (May 2007) redirects to http://
www.google.com. Using SSL for all web traffic also has performance concerns,
which is perhaps the reason why many sites do not support it.

7 Analysis and Results

Let us estimate the probability that our attack will be successful. Suppose that
Tor uses k entry guards in a network of n nodes, m of which exit port 80. In our

Browser-Based Attacks on Tor 197

basic attack, the client uses one circuit at a time that changes every ten minutes.
Further suppose that the attacker inserts u evil nodes in the network, of which
v are exit nodes that modify HTTP traffic. The v exit nodes can be noticed by
Tor users, but the other u − v servers only log data, and give no indication of
malice. Assume that all Tor nodes are equal—an unrealistic assumption, since
some Tor nodes have much better bandwidth than others, but not that relevant
if the attacker has average bandwidth. At the moment, the Tor network has
k = 3, n = 700, m = 200. Setting up an attack with u = 1 and v = 1 is fairly
easy to accomplish, so we will use these values to approximate. We will also
assume n � k, u, v.

Then v
m ≈ 0.5% of all Tor circuits will insert signal generators into webpages,

and approximately ku
n ≈ 0.4% of all Tor clients will choose an evil server for an

entry guard. Any given bugged page will use one entry guard every ten minutes,
so for any Tor user that has an evil entry guard the chance of being discovered in
any ten-minute interval is 1

k ≈ 33%, and the probability of remaining anonymous

over time is approximately the exponential distribution P (t) ≈
(

k−1
k

)t/10 min ≈
0.66t/10 min.

This means that a Tor user has a 0.4% chance of ever being vulnerable to
the attack. Every 10-minute interval during which a vulnerable user leaves a
webpage open, he has a 0.5% chance of leaving a signal generator running. If he
leaves a bugged page open over an hour-long lunch break, he has a 92% chance
of having this signal generator go through an evil entry node. At this point, the
adversary can associate the user with all the browsing that he did the circuit
that he used to download the signal generator. If he leaves a bugged page open
for eight hours of sleep, there is a negligible chance he will not be identified.

The probabilities that users are vulnerable or that they will receive a signal
generator are low, but this is under the assumption that the attacker only con-
trols a single Tor node. These probabilities are roughly linear in the number
of Tor nodes the attacker runs, so he can amplify his probability of success by
running several Tor nodes.

The attacker can decide whether to insert a signal generator into websites
based on what other websites the potential victim has visited through the same
Tor circuit. This allows a malicious exit node to masquerade as an honest ma-
chine to most users, a measure which would help the adversary prevent his exit
node from becoming discovered as malicious.

8 Conclusion

Current web design presents fundamental problems for maintaining anonymity
while browsing the web. Low latency anonymizing systems cannot easily protect
their users from end-to-end traffic analysis. Our attack exploits the web browser
code execution environment to perform end-to-end traffic analysis attacks with-
out requiring the attacker to control either party to the target communication.

There are two security problems that our attack exploits: HTTP’s vulnerabil-
ity to man-in-the-middle attacks and web browsers’ code execution feature. Tor

198 T.G. Abbott et al.

places the exit node as a man-in-the-middle of clients’ communications. Thus,
using Tor may actually decrease the anonymity of users by making them vul-
nerable to man-in-the-middle attacks from adversaries that would otherwise be
unable to perform such attacks.

Also fundamental to our attack is the fact that web browsers execute (poten-
tially malicious) code within an imperfect sandbox. This code execution allows
for arbitrary communication back to the HTTP server. Such communication
can include sending network traffic in a pattern designed to be detected by an
external observer using traffic analysis. This danger is particularly important
when we consider that recent advances in the web are centered around the use
of complex programs executed by the web browser. Even if users are willing to
disable these technologies, we have shown that mere HTML (through its meta
refresh tag) is a powerful enough language to attack the anonymity of Tor users.

Given the current design of the web, neither of these problems can be readily
addressed without sacrificing substantial functionality.

Acknowledgements

We thank Lasse Øverlier for sharing his hidden servers timing attack code with
us. We also thank Roger Dingledine, Paul Syverson, Frans Kaashoek, and the
anonymous reviewers for their helpful suggestions.

References

1. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 24(2) (February 1981)

2. Christensen, A., et al.: Practical Onion Hacking: Find the real address of Tor
clients. FortConsult (October 2006),
http://www.fortconsult.net/images/pdf/Practical Onion Hacking.pdf

3. Clark, D.: Design Philosophy of the DARPA Internet Protocols. In: Proceedings
of the ACM Special Interest Group on Data Communications, pp. 106–114. ACM
Press, New York (1988)

4. Dingledine, R.: Tor: anonymity (November 2006), http://tor.eff.org/
5. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion

Router. In: Proceedings of the 13th USENIX Security Symposium (August 2004)
6. Douceur, J.: The Sybil Attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.

(eds.) IPTPS 2002. LNCS, vol. 2429, Springer, Heidelberg (2002)

7. Hintz, A.: Fingerprinting Websites Using Traffic Analysis. In: Dingledine, R., Syver-
son, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 229–233. Springer, Heidelberg
(2003)

8. Levine, B.N., Reiter, M., Wang, C., Wright, M.: Timing Attacks in Low-Latency
Mix Systems (extended abstract). In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110,
pp. 251–265. Springer, Heidelberg (2004)

9. Liberatore, M., Levine, B.N.: Inferring the source of encrypted HTTP connections.
In: Proceedings of the 13th ACM conference on Computer and communications
security, ACM Press, New York (2006)

http://www.fortconsult.net/images/pdf/Practical_Onion_Hacking.pdf
http://tor.eff.org/

Browser-Based Attacks on Tor 199

10. Martin, K.: AOL search data identified individuals. SecurityFocus (August 2006),
http://www.securityfocus.com/brief/277

11. Murdoch, S.J., Danezis, G.: Low-Cost Traffic Analysis of Tor. In: Proceedings of
the 2005 IEEE Symposium on Security and Privacy (May 2005)

12. Øverlier, L., Syverson, P.: Locating Hidden Servers. In: Proceedings of the 2006
IEEE Symposium on Security and Privacy (May 2006)

13. Raymond, J.: Traffic Analysis: Protocols, Attacks, Design Issues, and Open Prob-
lems. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS,
vol. 2009, pp. 10–29. Springer, Heidelberg (2001)

14. Serjantov, A., Sewell, P.: Passive Attack Analysis for Connection-Based Anonymity
Systems. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808,
pp. 116–131. Springer, Heidelberg (2003)

15. Syverson, P., Tsudik, G., Reed, M., Landwehr, C.: Towards an Analysis of Onion
Routing Security. In: Federrath, H. (ed.) Designing Privacy Enhancing Technolo-
gies. LNCS, vol. 2009, pp. 96–114. Springer, Heidelberg (2001)

16. Wright, M., Adler, M., Levine, B.N., Shields, C.: An Analysis of the Degradation
of Anonymous Protocols. In: Proceedings of the ISOC Network and Distributed
System Security Symposium (NDSS), pp. 38–50 (February 2002)

17. Wright, M., Adler, M., Levine, B.N., Shields, C.: Defending Anonymous Com-
munication Against Passive Logging Attacks. In: Proceedings of the 2003 IEEE
Symposium on Security and Privacy (May 2003)

18. Wright, M., Adler, M., Levine, B.N., Shields, C.: The predecessor attack: An anal-
ysis of a threat to anonymous communications systems. In: ACM Trans. Inf. Syst.
Secur., pp. 489–522 (2004)

19. Squires, S.: Firefox Add-ons: Torbutton (February 2007),
https://addons.mozilla.org/firefox/2275/

20. TheOnionRouter/TorFAQ (November 2006),
http://wiki.noreply.org/noreply/TheOnionRouter/TorFAQ

http://www.securityfocus.com/brief/277
https://addons.mozilla.org/firefox/2275/
http://wiki.noreply.org/noreply/TheOnionRouter/TorFAQ

Enforcing P3P Policies Using a Digital Rights

Management System

Farzad Salim, Nicholas Paul Sheppard, and Rei Safavi-Naini

1 School of Computer Science and Software Engineering,
University of Wollongong, NSW 2522, Australia

fsalim,nps@uow.edu.au
2 Department of Computer Science, University of Calgary,

2500 University Drive, NW, Calgary T2N IN4, Canada
rei@cpsc.ucalgary.ca

Abstract. The protection of privacy has gained considerable attention
recently. In response to this, new privacy protection systems are being in-
troduced. SITDRM is one such system that protects private data through
the enforcement of licenses provided by consumers. Prior to supplying
data, data owners are expected to construct a detailed license for the
potential data users. A license specifies whom, under what conditions,
may have what type of access to the protected data.

The specification of a license by a data owner binds the enterprise data
handling to the consumer’s privacy preferences. However, licenses are
very detailed, may reveal the internal structure of the enterprise and need
to be kept synchronous with the enterprise privacy policy. To deal with
this, we employ the Platform for Privacy Preferences Language (P3P) to
communicate enterprise privacy policies to consumers and enable them
to easily construct data licenses. A P3P policy is more abstract than a
license, allows data owners to specify the purposes for which data are
being collected and directly reflects the privacy policy of an enterprise.

1 Introduction

Information privacy is regarded as the right of individuals to determine for them-
selves when, how, and to what extent information about them is communicated
to others. The concern about information privacy is growing for consumers who
may need to release their personal data to enterprises in exchange for a service.
In response to this concern, enterprises publish a privacy policy that is a repre-
sentation of different legal regulations, promises made to data owners, as well as
more restrictive internal practices of the enterprise.

Traditionally, privacy policies were written in natural languages. However,
informal privacy policies inherit the potential ambiguity and mis-interpretation
of natural text [16]. This raises two problems, first, such policies are difficult for
consumers to read and understand, and second, controlling the enterprise data
practices using such policies is impractical.

To address the first problem, the World Wide Web Consortium has proposed a
standard policy language, the Platform for Privacy Preferences (P3P), to enable

N. Borisov and P. Golle (Eds.): PET 2007, LNCS 4776, pp. 200–217, 2007.

Enforcing P3P Policies Using a Digital Rights Management System 201

enterprises to construct machine-readable privacy policies [6]. P3P policies can
be read, summarized and matched against users’ privacy preferences by P3P-
enabled browser software (P3P agents). Therefore, data owners can be prompted
on exactly what data is collected, for what purposes this data is to be used and
how long it is retained. Background information about the P3P language is
provided in Section 2.4.

Although enterprises who have posted P3P policies promise specific data us-
age, they still require internal mechanisms to enforce those promises. In other
words, publishing a P3P policy does not provide any technical guarantee that
enterprises act according to their policies once they have obtained user’s per-
sonal data. To address this problem, privacy protection systems such as E-P3P
[10], Tivoli [3] and SITDRM 1 [15] are emerging.

Tivoli, being the commercial version of E-P3P, is a privacy protection frame-
work that extends traditional access control systems by adapting a privacy ori-
ented language known as EPAL [12]. The language provides a syntax that allows
a policy auditor2 to specify privacy rules. In addition, EPAL has operational
semantics that govern the interpretation of the rules with respect to an access
request. Hence, an authorization decision can be made when a data user requests
to access a private data.

SITDRM uses another approach to the privacy enforcement problem. It
adopts the extended Digital Rights Management (DRM) model that was pro-
posed by Korba et al. [11] and implemented by Sheppard et al. [15]. The core
concept in SITDRM is the use of licenses that are formulated by consumers and
enforced by a digital rights management system. A license is a digital data file
that specifies usage rules for the collected data. A rule may specify a range of
criteria, such as the person to whom the right is issued, the frequency of access,
license expiry date, restriction of transfer to other devices, etc. Hence, such li-
censes can express the notions of privacy policies (e.g., obligations or conditions,
etc.) under which the data must be used, or the type of actions that can be per-
formed on the collected data. We will give an outline of the relevant components
of SITDRM in Section 2.3.

Whilst the SITDRM approach binds the enterprise data handling to the pri-
vacy promises made to customers, it has some limitations that we would like to
address in this work. First, data subjects in SITDRM are obliged to construct
an MPEG REL license. However, this task cannot be handled by an average
customer because MPEG REL has a complex syntax and semantics and was
designed to be used by policy auditors for specifying concrete access control
rules.

Further, to create an MPEG REL license, the consumer must have knowledge
of the identity of the user (or role) that the license is to be issued to. SITDRM
currently assumes consumers are provided with such information. However, for
many real world scenarios this is not practical as such knowledge about the

1 Smart Internet Technology Digital Rights Management.
2 The policy auditor is a person responsible for writing enterprise privacy policies. In

the legal context, this person is referred to as the Chief Privacy Officer (CPO).

202 F. Salim, N.P. Sheppard, and R. Safavi-Naini

roles/employees may reveal the internal structure and data flow of the enterprise.
For example, a bank customer would be able to know who in the bank has access
to customer’s account balances.

In addition, SITDRM needs to handle the dynamicity of the organization’s
structure. The roles/users within an enterprise change more frequently than the
purposes for which the data is being collected. Currently, customers are obliged
to provide a new license each time the roles/users (license holders) change.

Finally, SITDRM requires a systematic approach for creating templates for
collecting privacy preferences. Currently it assumes that there exists a human
user (privacy officer) who is aware of the enterprise privacy policy and can con-
struct license templates. These templates are then used by customers to create
a concrete MPEG REL license. However, in an enterprise which may collect
data at more than one point with different privacy rules the maintenance and
synchronization of the policies with these templates becomes impractical.

To address the above, we extend SITDRM by employing P3P to allow con-
sumers to modify a subset of an enterprise P3P policy for expressing their pri-
vacy preferences. P3P preferences are more abstract than a license and allow
data owners to specify the purposes for which data is to be collected. Hence,
they do not need to know concrete roles, rights or access conditions. Further,
P3P preferences reveal less information regarding the enterprise’s internal struc-
ture and eliminate the need for their re-issuing, when an internal role changes
and the purpose remains the same.

Despite these advantages, P3P preferences are not directly enforceable, so they
need to be transformed into MPEG REL licenses that can be enforced by SIT-
DRM. In this paper we outline the difficulty of such a translation and propose a
practical approach for mapping a P3P statement to an MPEG REL grant.

We have also extended SITDRM’s design and implementation by adding two
new components, the P3P Agent and the Mapping Console. The P3P agent
provides a systematic approach for collecting an organization’s P3P policy and
constructing a P3P preference template for data owner’s to customize and ex-
press their privacy preferences. The mapping console assists CPOs in specifying
the mapping rules for constructing MPEG REL licenses.

The rest of this paper is organized as follows: In Section 2 we will provide
the necessary background. In Section 3 we will show the architecture of our new
P3P-Enabled SITDRM. Section 4 will describe the necessary mapping rules for
transforming P3P preferences into an MPEG REL license. Section 5 will dis-
cuss how we can systematically automate a preference form from an enterprise’s
(P3P) privacy policy. We conclude the paper with an a discussion of outstanding
issues and conclusions in Sections 6 and 7.

2 Preliminaries

This section will briefly describe the Digital Right Managements (DRM) model
for data protection, some components of SITDRM, MPEG REL and the P3P
language. Interested readers may refer to [15,6,2] for further details.

Enforcing P3P Policies Using a Digital Rights Management System 203

2.1 DRM

Digital rights management provides protection for information by making access
to information depend on satisfying the conditions imposed by a license written
in a machine-enforceable rights expression language. DRM technology is widely
used in copyright protection applications, but can also be applied to privacy
protection [11,15] by developing licenses that represent individual’s preferences
for use of their personal information.

2.2 MPEG-21

The MPEG-21 Framework [2] is a framework for creating, distributing, using and
controlling multimedia content currently under development by the Motion Pic-
ture Experts Group (MPEG). Of particular interest to us are three components
in the MPEG-21 framework: Digital Items (DI), Intellectual Property Manage-
ment and Protection (IPMP) and the Rights Expression Language (REL).

Digital Items. The core notion in MPEG-21 is a digital item [2], which rep-
resents a collection of multimedia objects. Digital items are described using the
XML-based digital item declaration language (DIDL), which organizes content
and meta-data. For the purposes of this paper we consider digital items to be
the encapsulation of private data that needs to be protected.

Intellectual Property Management and Protection. Intellectual Property
Management and Protection is MPEG’s term for digital rights management [2].
MPEG-21 does not define a digital rights management system, but assumes
that IPMP functionality is provided by vendor-specific IPMP tools that can
be downloaded and made accessible to the terminal as necessary. IPMP tools
may implement basic functions such as decryption and watermarking, or may
implement complete digital rights management systems in their own right.

Rights Expression Language. Though MPEG-21 does not define a full digital
rights management system, it does define a rights expression language known as
MPEG REL [2] for creating machine-readable licenses. An MPEG REL license
is structured as a collection of grants issued by some license issuer. Each grant
awards some right over some specified resource to some specified principal, that
is, user of a resource. Each grant may be subject to a condition, such that the
right contained in the grant cannot be exercised unless the condition is satisfied.

In order to perform some action on a resource, a user (principal) must possess
a license containing a grant that awards the right to perform that action on
that resource, and satisfy the associated condition. This must be checked by the
terminal prior to exercising the right.

MPEG REL is defined as a collection of three XML schemas, called the core
schema (denoted by the XML namespace prefix r in this paper), the standard
extension schema (prefix sx) and the multimedia extension schema (prefix mx).
In addition, the authors in [15] introduced a privacy extention schema with prefix
px for use in the proposed privacy protection system (SITDRM). Figure 3 shows

204 F. Salim, N.P. Sheppard, and R. Safavi-Naini

an example of an MPEG REL grant allowing a principal (r:keyHolder) identified
by his/her public key to print a resource (mx:diReference) identified by a digital
item identifier (smartinternet:doc1). The principal is only permitted to print the
resource once (sx:ExerciseLimit).

<r:grant>
<r:keyHolder>

<dsig:KeyValue> ... </dsig:KeyValue>
</r:keyHolder>
<mx:print/>
<mx:diReference>

<mx:identifier> smartinternet:doc1 </mx:identifier>
</mx:diReference>
<sx:ExerciseLimit>

<sx:count> 1 </sx:count>
</sx:ExerciseLimit>

<r:grant>

Fig. 1. A License

2.3 SITDRM

SITDRM is an implementation of MPEG-21 IPMP for privacy protection. It
provides a framework within which content providers can control the use and
distribution of personal data (content) through the enforcement of data licenses.
In SITDRM each resource that is protected by an IPMP tool is referred to
as a governed resource. Each governed resource is associated with a plain text
identifier and an IPMP information descriptor that associates the resource with
a license and describes the IPMP tools required to access the resource. If the
conditions of the license are satisfied, the terminal must obtain and instantiate
the IPMP tools in order to access the resource.

Figure 2 shows an overview of the SITDRM system, where a data controller
(e.g., bank) requires information to be collected from data subjects (e.g., cus-
tomers). All of this information is stored in some central database. In addition,
there are some data users (e.g., employees) that require access to the information
in order to carry out their jobs and provide service to the customers.

Customers submit their information via a form on the bank’s web site. For
example, a document containing the customer’s credit card number and postal
address are formatted as an XML document. At the same time, customers design
an MPEG REL license that describes how this information may be used.

Upon submitting the form, the customer’s web browser converts the resulting
XML document into the governed resource of an MPEG-21 digital item, and
issues a license designed by the customer. The governed item and issued license
are then transmitted to the data controller for storage.

Employees who require access to a customer’s data may download the gov-
erned item from the data controller. Upon attempting to perform some action
on the item, the employee’s terminal asks the data controller for a license that

Enforcing P3P Policies Using a Digital Rights Management System 205

 Data User
 Terminal

Req(DI)

Enc(DI)

 Web
Terminal

Enc(DI)

Sign(License)

Data Controler
 (Bank)

Data Subject
 (Customer)

Database
Enc(Data)

License
 Builder

Digital
 Item

 Ref ID

Verify(sign)

key

Dec(DI)

Fig. 2. SITDRM Architecture

authorizes this action. If an appropriate license is found, the action is permitted
to continue. Otherwise, the action is rejected.

2.4 P3P

P3P [6] is a standard developed by the W3 Consortium for assisting web users
to discover and evaluate the privacy policies of on-line service providers. P3P
consists of an XML-based language for expressing the privacy policies of service
providers, and a protocol for associating a P3P policy to collected data and
locating the privacy policy file relevant to any particular data collection action.
A P3P policy file is composed of a sequence of statements, each containing five
elements described below. Figure 3 shows a typical statement in a P3P policy.

– a purpose for which this data will be used;
– a recipient to whom this data may be communicated;
– a retention policy according to which the data will be discarded;
– a data group of the data to which this statement applies; and
– a consequence, being an informal reasoning behind the collection of this data.

Despite many advantages of the P3P language such as providing a standard
way of communicating privacy policies to users and allowing for the automation
of matching privacy preferences and privacy policies [6,1,9], the language is sub-
ject to some criticisms. First, P3P policies are subject to multiple interpretations
and different software agents that read them may arrive at different conclusions
for the same policy [17]. Second, privacy polices are offered on a take-it-or-leave-
it basis by the service provider, and may not reflect the actual desires of users
[4]. Third, the policies given in a P3P policy are not automatically enforced [5],
requiring dissatisfied data subjects to resort to legal action.

Yu, et al. [17], address the first problem by proposing relational formal seman-
tics for P3P and introducing some integrity constraints. Namely they introduce
two types of semantics by which P3P statements can be interpreted, data-centric
and purpose-centric semantics. The term semantics in this context refers to the
relationships among the four major components (purpose, recipient, retention
and data) of a P3P statement.

206 F. Salim, N.P. Sheppard, and R. Safavi-Naini

<STATEMENT>
<CONSEQUENCE>

We will access your credit card records to process your loan
requests. We have the right to retain these information
for a year.

</CONSEQUENCE>
<DATA-GROUP>

<Credit-Card-History required="always"/>
<Credit-Card-Number required="opt-out"/>

</DATA-GROUP>
<PURPOSE>

<loan required="opt-out">Loan and Finance</loan>
</PURPOSE>
<RETENTION> <one-year /> </RETENTION>
<RECIPIENT> <ours /> </RECIPIENT>

</STATEMENT>

Fig. 3. A P3P Statement

In purpose-centric semantics, a data item along with a purpose determines
other elements (i.e., recipients and retention) in a P3P statement. So, each state-
ment takes only one purpose and other elements in the statement are centered
around that purpose. The rationale behind the purpose-centric semantics is that
certain data is sometimes used for multiple purposes, depending on the specific
purposes, the data may be kept for different periods of time. Hence, binding
the data and purpose of each statement avoids potential inconsistencies in a
statement. For the rest of this paper we assume that our P3P policies have
purpose-centric semantics.

3 P3P-Enabled SITDRM Architecture

In order to address the aforementioned limitations of SITDRM, we employed
P3P in conjunction with MPEG REL licenses. The P3P protocol is adopted
as a standard approach for the communication of privacy policies during data
collection3.

Further, at one end the P3P language is used for presenting privacy policies to
customers and collecting their privacy preferences, and at another end, MPEG
REL is employed for specifying enforceable licenses (with concrete access control
rules). The combined use of these two languages bridge the gap between the
abstraction required for consumers to specify their privacy preferences and the
precision needed for a license to be enforceable by user’s terminals.

As shown in Figure 4 the new architecture for SITDRM introduces the follow-
ing new components: a P3P policy, a P3P agent and mapping rules. We assume
3 Since we simply adopt the P3P protocol, this paper does not elaborate on the policy

communication aspect. Interested readers may refer to P3P specification for more
details.

Enforcing P3P Policies Using a Digital Rights Management System 207

Req(DI)

Enc(DI)

 Web
Terminal

Enc(DI)

Sign(Preference)

Data Controler
 (Bank)

Data Subject
 (Customer)

Database
Enc(Data)

Digital
 Item

 Ref ID

 P3P

Policy
 Data User
 Terminal

 P3P
Agent

Preference
Database

License
Database

key

Dec(DI)

Verify(sign)

P3P Policy

Mapping

Fig. 4. P3P-Enabled SITDRM Architecture

that there is a Chief Privacy Officer (CPO) who writes a P3P policy that spec-
ifies the data handling of the enterprise. The P3P policy can then be retrieved
and represented to a policy subject by using the P3P agent that is embedded
within the data subject’s web terminal. In addition, the P3P agent allows the
data subject to modify the enterprise policy such that it matches his/her pri-
vacy preferences. Privacy preferences are then digitally signed and transferred to
the enterprise where they are stored. These signed privacy preferences represent
the consent of the data subjects. Since the P3P preferences are abstract, they
cannot be directly enforced by the data user’s terminals, hence, they need to be
transformed into their MPEG REL license(s).

In the following section we will explain how a P3P policy can by converted to
an MPEG REL license enforceable by SITDRM. We say an MPEG REL license
corresponds to a P3P preference if the license is constructed using the mapping
methodology that we will introduce in Section 4.

4 Constructing a License from a P3P Preferences

In order to convert P3P preferences to an MPEG REL license we will identify
the correspondence between the elements in both languages and provide a set
of mapping rules that take a P3P policy as an input and return an MPEG REL
license(s). However, our aim is not to specify a new standard universal vocabu-
lary for P3P or MPEG REL. Because a particular mapping of P3P elements to
MPEG REL elements is enterprise dependent (e.g., role names vary), having a
global vocabulary or a generic mapping would be impractical. Rather, we would
like to introduce a practical approach to transform a subset of P3P policies into
MPEG REL licenses. Figure 5 illustrates the associations that we would like
to introduce between the components of a P3P statement and an MPEG REL
grant. Those connections that are represented with dottedlines show the areas
where there is no direct relationship between the two components.

In the following sections we will discuss a methodology that permits the con-
version of P3P preferences into one or more MPEG REL licenses. We have
incorporated the mapping into a tool, the Mapping Console, that assists CPOs

208 F. Salim, N.P. Sheppard, and R. Safavi-Naini

Fig. 5. P3P statement & MPEG-REL grant

by providing the following. First, a central point where the vocabulary necessary
(e.g., data elements) for creating an enterprise P3P policy and an MPEG REL
license is introduced and stored. This is particularly of interest as the syntax
and semantics behind the vocabularies used in P3P and MPEG REL determines
the correctness of the mapping rules that are being introduced. Second, like any
access control management application, the Mapping Console allows the CPO
to specify the roles, principal and principal/role assignments through the role
specification window shown in Figure 6. Third, given this contextual informa-
tion, it allows the CPO to customize the mapping rules as well as automating
the process of constructing MPEG REL licenses from P3P preferences.

Fig. 6. The Mapping Console: Role Assignment Tab

4.1 Purpose

The most conspicuous difference between MPEG REL and P3P language is the
latter’s use of purposes. In the MPEG REL model, a purpose must be inter-
preted as some combination of a particular principal exercising a particular

Enforcing P3P Policies Using a Digital Rights Management System 209

right under certain conditions. In what follows we will describe our approach
for determining principal(s), necessary rights and conditions for a license
such that it complies with the purpose of the corresponding P3P preference.

Principals: In order to realize the correlation between a purpose (in P3P) and
a principal (in MPEG REL) we need to consider the relationships between data
users in an enterprise and the tasks that they perform. The definition of such a
relation is directly dependent upon the access control model adopted. Here, we
consider access control systems that are based on the Role Based Access Control
(RBAC) model [13]. In this model several roles are identified, and associated with
them are some rights and conditions, and principals are assigned to roles which
enable them to perform certain tasks on data that is predefined for that role.

We adopt the model proposed by Schaad et al. [14], where roles in enterprises
are composed of a description of a function and an position within the organiza-
tional hierarchy. Functions represent the type of duties that a role is based on,
such as loan processing, promotion & marketing, etc. Typical positions could be
that of the ordinary clerk or group manager. An example of a role would be loan
processing/group manager, indicating that the principal of the role performs a
loan processing function and holds the official position of a group manager. The
following table shows some typical roles in a bank.

Table 1. Roles

Role ID Function Position
A Promotion & Marketing Manager
B Promotion & Marketing Officer
C Loan processing Officer
D Finance Specialist
E Account Management Bank Manager

In this model, the job functions indicate the purposes for which a role may
use the data. Hence, this indirect relationship between a purpose and a principal
(through roles) allows us to determine those data users involved in carrying out
a purpose. Since a role is a composition of a function and a position, several
roles may be involved in carrying out a purpose. For example, a marketing
officer, marketing manager and delivery person may all work under the function
“Promotion & Marketing”. Figure 7 shows the relationships between purpose,
roles, access rights and principals in the system.

Rights: The notion of right and condition in the P3P language are implicit
within the element purpose. For example, two P3P purposes email-marketing
and telemarketing may be instances of the same right, contact, but imply differ-
ent conditions.

In a typical RBAC model, there exists a security officer who determines the
appropriate rights for each role. We follow the same approach and assume that

210 F. Salim, N.P. Sheppard, and R. Safavi-Naini

Fig. 7. Role Rights Relationship

the rights for each role are determined by the CPO. Hence, given a P3P purpose
we can identify (i.e., through roles) the principal and the rights for the cor-
responding license.

Conditions: Given a role, there may exist several conditions that must be
satisfied before a member of the role can carry out an action. We have categorized
the conditions into two classes. First, the conditions that are indirectly specified
by the data subjects through the purpose for which their data can be used. Such
conditions are implicit to some of the P3P purpose element, such as contact and
telemarketing4 . The first one only asserts that the customer may be contacted
and allows for any mode of contact and the second purpose which stipulates the
only possible method of contact is phone.

In order to reflect these restrictions in MPEG REL licenses, we use the Con-
tactMethods condition. This element contains an arbitrary number of elements
of type ContactMethodUri, each of which has a mandatory definition at-
tribute specifying a URI defining a particular method of contact. A typical con-
tact method might include e-mail, telephone (using voice-over-IP) or the short
messaging service (SMS). If the ContactMethods child is absent, any available
contact method may be used for making contact.

The second class of conditions are those that are imposed by a CPO. These
are usually application dependent conditions, derived from the security/privacy
policy of the enterprise. Hence, data subjects may not necessarily be informed
of the existence of these conditions. An instance of such conditions may impose
a constraint that limits the access of principals (with certain roles) to a specific
applications within the enterprise. Further, with the advent of wireless devices,
location-based access control is also gaining more attention, so the CPO may like
to ensure that the data is only accessible within specific zones in the enterprise.

4.2 Retention

The P3P language introduces five elements to specify the retention policy: no-
retention, indefinitely, stated-purpose, legal-requirements and bus-
iness-practices.

4 Note that due to the shortage of the space we skip providing the definition of the
P3P elements. Interested readers may refer to the P3P specification.

Enforcing P3P Policies Using a Digital Rights Management System 211

<r:validityInterval>
<!-- Time the record is submited -->
<r:notBefore>2006-12-01T00:00:00</r:notBefore>
<!-- Destruction time -->
<r:notAfter>2007-12-01T00:00:00<r:notAfter>

</r:validityInterval>

Fig. 8. An MPEG REL condition: Time Interval

Whilst the first two elements specify a destruction timetable, the other three
indicate that the retention period is dependent on other factors such as legisla-
tion. Since a license requires a concrete time constraint in order to be enforce-
able, we are only able to map the first two retention elements. In addition to
the above standard P3P vocabularies, we have also introduced a sub-element
for retention that is used in our SITDRM application and allows a CPO to
express the exact retention timetable. These elements represent a year, month
or day that the data can be retained, (e.g., one-year or one-month).

For those retention sub-elements that specify a time constraint such as
one-year we use the validityInterval condition in MPEG REL that allows
us to specify the duration for which the resource can be used. For example, let
us assume a data subject formulates P3P preferences that specify that data may
be used for one year. In order to construct an appropriate license condition,
SITDRM adds the condition shown in Figure 8 to the corresponding license.

The no-retention element means “Information is not retained for more than
a brief period of time necessary to make use of it during the course of a single
online interaction”. We consider the no-retention element in a P3P statement
to mean that the collected data can only be used once (in a single interaction).
Hence, in order to specify this as an MPEG REL condition we use the Exercise-
Limit element which allows us to specify the number of times that the license
can be used. A simplified version of such a condition was shown in Figure 1.

Trivially, when the P3P retention element is indefinitely we do not specify
any time condition for the MPEG REL license.

4.3 Data-Type

Both a statement in P3P and a grant in a license refer to a piece of information
that needs to be protected. In MPEG REL the resource element contains a
reference to the actual data that the license is about to provide access for. In
P3P language the data-types consist of sub-elements that specify the type of
data that is being collected.

The data-types element may include sub-elements at different levels of gran-
ularity. It can refer to both aggregate data (categories) as well as more concrete
pieces of information, such as, name, e-mail address or credit card number. In
P3P, personal data is classified into eighteen categories, including physical con-
tact information, purchase information, demographic and socio-economic data,
etc. For example, a person’s gender, blood type, and date of birth belong to

212 F. Salim, N.P. Sheppard, and R. Safavi-Naini

the category of demographic and socio-economic data. Thus, an organization
may only specify the categories of personal data it wishes to collect rather than
the concrete data elements. Although such an abstraction simplifies the task of
specifying a P3P policy, it will adversely effect the granularity of the licenses.
Therefore, in this work, we avoid using categories and only allow the specifica-
tion of P3P policies with concrete data-types. Currently we use the user-data
element in P3P base data schema [6], which consists of typical concrete data
elements such as, name, birth-date, phone-number and postal-address, etc.

The only major difference between the data-types and the resource is that
the latter contains reference to the particular data that is being collected. P3P
data-types, on the other hand, do not refer to any particular record, they
are only labels of what type of data the enterprise collects. In order to derive a
license from a P3P preference we need to determine the reference to the collected
data. The reference to the collected data can be trivially identified through the
combined use of the unique record identification number that the data subject’s
web terminals assign to each transaction and the data types (e.g., phone, e-mail)
specified in the P3P preferences.

4.4 Recipients

The reason for having the recipient element in P3P is to declare the third
parties who may receive the collected data. The P3P language defines six possible
recipients, ours, delivery, same, other-recipient, unrelated, public.

Although the recipient element may provide abstract information to data sub-
jects regarding the sharing of their data, it does not play a significant role in
mapping P3P preferences to an MPEG REL license. This is because the informa-
tion that it provides can be extracted more precisely from purpose elements. For
example, in a P3P statement where the recipient is ours, mapping the purpose
allows us to determine the exact role(s) within the organization for which a
license must be constructed.

Other than ours, the rest of the recipient classes suggest that the collected
data is being shared with other parties. Hence, if there is a P3P statement in
which ours is not part of its recipients we shall assume that we must not issue any
license for the roles inside the enterprise, but only for those outside (within other
organizations). However, since the recipient elements (e.g., delivery, public)
are very abstract, we are unable to determine, whom (which role) within these
third parties licenses must be issued to. One simplistic approach would be to
assume that the role structure of both parties are identical, in which case, the
roles, rights and conditions that were determined through purpose element can
be used. But in reality, each organization has its own role model, so a more so-
phisticated approach must be taken. The current scenario of SITDRM assumes
that the collected data is to be protected within the boundary of the enter-
prise. Hence, we can safely assume that only ours is used. Information shar-
ing and cross-organizational privacy control using SITDRM will be our future
work.

Enforcing P3P Policies Using a Digital Rights Management System 213

5 Specifying P3P Preferences

As described in Section 2, the intention of P3P is to provide a standard language
to inform data owners of the global privacy practices within an enterprise. In
reality, these policies, after being accepted by consumers, can also be considered
as their privacy preferences. For example, consider a policy statement that states,
the collected phone numbers will be used for marketing purposes. In this scenario,
if a consumer (Alice) accepts this policy statement, we can safely consider the
statement to be Alice’s privacy preferences with respect to the use of her phone
number. In the rest of this section we will describe how P3P policies can be used
to collect data owner’s preferences.

Recall that the elements that constitute a P3P statement may either be op-
tional or compulsory. A policy statement that is composed of optional elements
can be customized by data subjects to reflect their privacy preferences. For
example, consider an arbitrary policy which indicates that Alice’s credit card
history is accessed to process her loan application and allows her to choose to
be contacted via e-mail, telephone or fax. In contrast, those policy statements
with non-optional elements indicate the areas where the operations that are
performed on data are necessary for the enterprise and cannot be changed.

Based on the above concept, we have developed a P3P Agent that retrieves the
enterprise P3P policy and constructs a template that enables the data subject
to modify the P3P policy to create and submit his/her privacy preferences.

The idea of having client side agents that can retrieve P3P policy is not
new. There are P3P agents such as AT&T Privacy Bird [7] that can parse the
P3P policy and evaluate it against the consumer’s privacy preference written
in APPEL [8]. Unlike these tools our P3P agent introduces a notion of policy
negotiation between consumers and the enterprise by allowing consumers to
modify the P3P policy to construct their preference. However, users are not free
to express any preference they wish: the scope of the negotiable policy is strictly
defined by the enterprise and depends on what optional elements are included
in the enterprise’s P3P policy.

Our P3P agent collects the relevant P3P policy from the enterprise website
and generates a preference template. A preference template is a graphical rep-
resentation of the statements which constitute the enterprise P3P policy. The
elements that constitute a statement in the template can either be fixed or mod-
ifiable, depending on their attributes (always, opt-in and opt-out). This allows
the data owners to modify the policy based on their privacy preferences. We
refer to the modified P3P policy as P3P Preferences. These P3P preferences will
be digitally signed by customers (using their web terminal) and sent to the en-
terprise P3P preferences database. The pseudo-algorithms 1 and 2 in Appendix
A show how a preference template is generated from a P3P policy.

Figure 9 shows a P3P preference template that was generated by using the
P3P policy shown in Figure 3. As you can see for every statement in the pol-
icy, the informal description is followed by a set of modifiable check boxes for

214 F. Salim, N.P. Sheppard, and R. Safavi-Naini

Fig. 9. P3P Preference Template

data, retention and recipients. These elements are centered around the
purpose of the statement to highlight our purpose-centric semantics of the P3P
language.

6 Future Work

The implementation of the P3P agent can be extended by allowing data owners
to specify their preferences in the form of APPEL rules. Hence, when the agent
receives the P3P policy, it first evaluates the P3P rules with respect to the user’s
APPEL rules and only shows the rules that do not match the current preferences.
This will semi-automate the process of issuing P3P preferences.

Currently, we assume the elements (e.g., purposes) in a P3P statement are
atomic elements and there are no hierarchical relationships between them. How-
ever, in reality purposes as well as data-types can be structured in a hierarchical
form. One extension to the current P3P agent is to allow for the expression of
these hierarchies. For example, to allow the data owner to see that the purpose
“marketing” may indeed mean direct marketing and online marketing where di-
rect marketing itself can consist of phone marketing or fax marketing.

Finally, as an extention to this work we investigate how organizations that im-
plement SITDRM could share sensitive information, whilst ensuring the shared
data are used with respect to the privacy policy of the organization that has
collected the data.

7 Conclusion

In this paper we have discussed our approach for mapping P3P statements to
MPEG REL grants, hence, to construct MPEG REL licenses from P3P prefer-
ences. Further, we have adopted this theory to extend the SITDRM architecture
with a P3P handling component. Our extension will improve SITDRM and en-
able us to achieve the following goals. First, to facilitate the communication of
P3P privacy policies with data subjects and enabling them to specify enforceable

Enforcing P3P Policies Using a Digital Rights Management System 215

privacy preferences. Second, to provide a systematic way of creating templates,
through which data subjects can specify their privacy preferences. Lastly, to en-
sure that the internal structure of the enterprise (users, roles) remains hidden
from data subjects while they are formulating their privacy preferences.

References

1. Barth, A., Mitchell, J.C.: Enterprise privacy promises and enforcement. In: WITS
2005: Proceedings of the 2005 Workshop on Issues in the Theory of Security, Long
Beach, California, pp. 58–66. ACM Press, New York (2005)

2. Bormans, J., Hill, K.: International standards organization. Information technology -
multimedia framework (MPEG-21) - part 5: Rights expression language. ISO/IEC
21000-5:2004

3. Bucker, A., Haase, B., Moore, D., Keller, M., Koblinger, O., Wu, H.-F.: IBM tivoli
privacy manager solution design and best practices. In: Redbooks (2002)

4. Catlett, J.: Open letter to P3P developers and replies. In: ACM Conference on
Computers, Freedom and Privacy, pp. 157–164. ACM Press, New York (2000)

5. Coyle, K.: P3P: Pretty poor privacy? a social analysis of the platform for privacy
preferences (P3P)

6. Cranor, L., Langheinrich, M., Marchiori, M., Presler-Marshall, M.: The platform
for privacy preferences 1.0 (P3P 1.0) specification (2002)

7. Cranor, L.F., Arjula, M., Guduru, P.: Use of a P3P user agent by early adopters.
In: WPES, pp. 1–10 (2002)

8. Cranor, L.F., Langheinrich, M., Marchiori, M.: A P3P preference exchange lan-
guage 1.0 (APPEL 1.0). In: W3C Working Draft (2002)

9. Karjoth, G., Schunter, M., Herreweghen, E.V.: Translating privacy practices into
privacy promises: How to promise what you can keep. In: POLICY 2003: Proceed-
ings of the 4th IEEE International Workshop on Policies for Distributed Systems
and Networks, p. 135. IEEE Computer Society, Washington, DC (2003)

10. Karjoth, G., Schunter, M., Waidner, M.: Privacy-enabled services for enterprises.
In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS,
vol. 2453, pp. 483–487. Springer, Heidelberg (2002)

11. Kenny, S., Korba, L.: Applying digital rights management systems to privacy rights
management. Computers & Security 21(7), 648–664 (2002)

12. Research Report 3485: IBM Research. Enterprise Privacy Authorization Language
(EPAL) (2003)

13. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2), 38–47 (1996)

14. Schaad, A., Moffett, J., Jacob, J.: The role-based access control system of a eu-
ropean bank: a case study and discussion. In: SACMAT 2001: Proceedings of the
Sixth ACM Symposium on Access Control Models and Technologies, pp. 3–9. ACM
Press, New York (2001)

15. Sheppard, N.P., Safavi-Naini, R.: Protecting privacy with the MPEG-21 IPMP
framework. In: 6th Workshop on Privacy Enhancing Technologies, pp. 152–171
(2006)

16. Stufflebeam, W.H., Antón, A.I., He, Q., Jain, N.: Specifying privacy policies with
P3P and EPAL: lessons learned. In: WPES, p. 35 (2004)

17. Yu, T., Li, N., Anton, A.I.: A formal semantics for P3P. In: SWS ’04: Proceedings
of the 2004 Workshop on Secure Web Service, pp. 1–8. ACM Press, New York
(2004)

216 F. Salim, N.P. Sheppard, and R. Safavi-Naini

A Pseudo Codes to Construct a Preference Template

Algorithm 1. createPreferenceForm(policy)
1: while new(statement) do
2: while new(purpose) do
3: create a purpose block
4: while new(data) do
5: attribute = getAttribute(data)
6: addOptions(data, attribute)
7: end while
8: while new(retention) do
9: attribute = getAttribute(retention)

10: addOptions(retention, attribute)
11: end while
12: while new(recipients) do
13: attribute = getAttribute(recipients)
14: addOptions(recipients, attribute)
15: end while
16: end while
17: end while

Algorithm 2. addOption(element, attribute)
1: if attribute = “always” then
2: add(element, DISABLED)
3: else if attribute = “Opt-in” then
4: add(element, UNCHECKED)
5: else if attribute = “Opt-out” then
6: add(element, CHECKED)
7: end if

B Security Architecture of P3P-Enabled SITDRM

There are three types of users that interact with SITDRM: a data user, who uses
a trusted terminal to use the data, a data owner who provides the data and the
privacy officer, who performs the tasks necessary for converting P3P preferences
to licenses that can be used by data users.

In SITDRM, digital items are distributed in an encrypted form, and cannot be
accessed without a secret key. Hence, the management of keys and licenses is of
primary concern. In order to gain access to the content, a data user must obtain
a valid license for the terminals that are being used. The license describes the
terms and conditions under which the user may use the content, and also provides
the user with the keys required to access the content. Hence, terminals must be
able to verify the authenticity and integrity of any license that grant rights over
content. Every trusted terminal T has a private key K̄T and its corresponding

Enforcing P3P Policies Using a Digital Rights Management System 217

public key KT . The private key K̄T is known only to the terminal; in particular,
it is not known to the human user of the terminal. This is to prevent users from
accessing the data from any other terminal.

Fig. 10. P3P-Enabled SITDRM Security Architecture

The privacy officer has a private key K̄P and corresponding public key KP ,
and the authenticity of KP can be verified by terminals using some public key
infrastructure. The private key K̄P is known only to the privacy officer.

The data owner has a private key K̄O and the corresponding public key KO.
Similarly, the authenticity of KO can be verified by the privacy officer using
some public key infrastructure. In addition, the data owner has a master key K
which is a symmetric key and known only to them. This key is used to encrypt
individual resources as described in the following.

Every resource r in the system is associated with a public identifier ir created
by data controller to ensure the uniqeness of the records. All resources in the
system are encrypted by a resource key Kr derived via a one-way function of the
master key K and identifier ir .

After generating Kr , the resources will be encrypted and stored in a resource
database. Then the resource key Kr is encrypted with the public key of the
privacy officer KP and embedded to the P3P preferences of the data owner
which were constructed using the P3P agent. The P3P preference is signed by
the data owner before being sent to the privacy officer.

By having a P3P preference, the resource key and the mapping rules, the
privacy officer is in a position to construct a license for data users. These licenses
are only issued to the user’s trusted terminals, so the user must supply the issuer
with the public key KT of the terminal T on which they wish to use the resource.

In addition to specifying the terms under which the resource r may be used,
the license contains the resource key Kr encrypted by the terminal’s public key
KT . Since the corresponding private key K̄T is known only to the terminal T ,
only T is able to decrypt Kr and therefore decrypt the resource r.

Simplified Privacy Controls for Aggregated Services —
Suspend and Resume of Personal Data

Matthias Schunter and Michael Waidner

IBM Research, Zurich Research Laboratory
Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland

{mts,wmi}@zurich.ibm.com

Abstract. The Internet is moving towards dynamic and ad-hoc service compo-
sition. The resulting so-called Web 2.0 sites maintain a unified user-experience
while interacting and exchanging personal data with multiple other sites. Since
the interaction is dynamic and ad-hoc, existing privacy policy mechanisms are
not designed for this scenario.

In this article we describe a new lightweight approach towards privacy man-
agement. The core idea is to provide a “privacy panel” – a unified and simple
entry point at each site that enables consumers to review stored data and manage
their privacy. Key aspects were ease-of-use and handling of recursive disclosures
of personal data.

1 Introduction

Increased exposure of web services by enterprises has lead to an emerging service ag-
gregation ecosystem. Today, there exists no easily usable concept for distributed privacy
controls in such federated service aggregations. As a consequence, today’s service ag-
gregations are either limited to applications in which no personal information is handled
or to individuals that do not care about their privacy.

In this article, we describe a new concept of privacy panels for end users. We de-
fine a powerful yet usable mechanism that enable individuals to control their privacy
throughout a network of aggregated services. Our main objectives are

– Transparency: Individuals can discover the privacy policy of a site, which data
was collected, how it was used, and to whom it was disclosed.

– Control: Individuals can control data that is stored about them. This includes dele-
tion or blocking and unblocking of data across all or some of the services that have
been aggregated.

– Usability: Existing privacy enforcement concepts [5,9] are powerful in an enter-
prise setting. However, they lack the ease of use and simplicity needed in an end-
user-oriented scenario.

The privacy panel (see Figure 1 for an example picture) allows an individual consumer
to manage privacy of a given site and all sites to which personal data has been disclosed
by that site. The panel provides a single entry point to review the policy (“our policy”)
and the stored data (“your data”), to block and unblock further usage of portions of
personal data (“block identity”), and to delete personal data (“delete identity”).

N. Borisov and P. Golle (Eds.): PET 2007, LNCS 4776, pp. 218–232, 2007.

Simplified Privacy Controls for Aggregated Services 219

The goal of our concept is to enable enterprises to act as better guardians of their
customers’ data.1 Today, enterprises are often limited by the complexity of privacy con-
cepts. As a consequence consumers suffered from limited transparency and control.
Note that our concept needs to be augmented by proper auditing and controls to ensure
that enterprises correctly deploy the technology and comply with the privacy promises
they have made.

§§ Our policy

Your data

Block identity

Delete identity

Fig. 1. Privacy panel

Outline. The remainder of the article is structured as follows: Section 2 outlines the
basic model of usable privacy control across multiple organizations and provides more
details on the proposed privacy panel. Section 3 formalizes privacy controls in a single
organization. Section 4 defines our trust management model and expands these concepts
to protect personally identifiable information that has been disclosed to other organiza-
tions. Section 5 describes how to provide an enhanced level of verifiability to end users.
Section 5.4 concludes our article.

2 Usable Privacy Controls in Aggregated Services

Our approach has three main components. The simple user interface to provide trans-
parency and control to end users, the protocols that define how to implement the cor-
responding privacy controls across multiple organizations, and the policies and their
semantics that allow organizations to formalize how data may be used. We use an on-
line retail scenario to illustrate our concepts.

2.1 Online Retail Scenario

Consider the following scenario, involving a typical online bookstore B and a customer
C (see Fig. 2). Customer C has an account with bookstore B, and B links whatever
it knows about C to his or her account: all purchases made by C, voluntarily pro-
vided preferences, which books C looked at in the last few weeks. All in all, B has a
fairly complete picture of C, as far as C’s reading interests are concerned. By cross-
correlating this data B gets a good idea about which books C might purchase in the
future, which allows B to offer very precise recommendations to C. Unlike blind mass-
marketing, these recommendations are precisely to the point, and thus C is likely to
appreciate those recommendations and love this service.

1 Note that this approach augments privacy by means of self-protection [6,7]: While self-
protection minimizes the data that is being released and traces accidental disclosures, we focus
on data that needs to be released despite minimization.

220 M. Schunter and M. Waidner

Customer

C

Bookstore

B

Wholesale

W

Shipment

S

Orders

Behavior

Preferences

Payment

Processor P

P
a
y
m
e
n
t

A
u
th
o
riz
a
tio
n
s

Book Orders

D
e
liv
e
ry

R
e
q
u
e
s
ts

Fig. 2. Online retail scenario

Now assume that C buys a specific book at B, and pays with a credit card issued
by a payment processor P . In order to fulfill the order, B sends certain data to P , for
payment authorization, and then sends the book and shipping details to a wholesaler W ,
and finally this wholesaler sends the book plus shipping details to a shipping agent S.
At the end, C’s data went from B to P and W and from W to S.

Such scenarios raise significant privacy concerns: many people appreciate receiv-
ing specific recommendations, but they do not like the idea that others might see their
behavior. Particularly critical situations are subcontracting scenarios (B delegates ship-
ping to W , who further delegates to S), and acquisition scenarios. In the latter the fear
is that when B′ acquires B, and with it all of B’s customer data, the business model
of B might change, and suddenly the new business owner might decide that the new
model will benefit more from selling the customer data to whoever pays most than from
keeping them confidential.

2.2 Transparency and Control Using a Privacy Panel

By adding a standardized privacy panel to all participating sites, a single entry point al-
lows individuals to exercise control over their data. The panel is linked from all places
where an enterprise collects or displays personal data (e.g., the login page, the page
where C can inspect all previous orders), and will also create a specific identity man-
agement “portal” at a well known address. Say, if B can be reached at http://www.
B.com then this portal will be at http://www.B.com/identity. The four icons
in Figure 1 represent buttons on a web page. Ideally, these buttons and their essen-
tial semantics will be standardized so that customers who see them spontaneously and
dependably associate the right meaning with them.

“Our policy” will open a window with C’s privacy policy (most web sites offer this
already).

“Your data” will open a window where C gets a report of all data B stores related to
C. A standard should decide what “all data” will mean, but intuitively this is the data
itself, plus the history of data (when and from whom and why did B receive data, and
to whom and when and why did B send data?), plus links to the privacy panels of all

Simplified Privacy Controls for Aggregated Services 221

parties that received data from B. If applicable, the panel should also explain how data
was collected or from whom it has been received. Note that this includes direct and any
indirect user data an organization plans to collect, i.e., if the collection of indirect data
such as clickstream data is not declared, the organization is not authorized to collect
this type of data.

“Block identity” will prevent B from using C’s data for almost all purposes. All excep-
tions must be pre-agreed in the policy. Intuitively, these exceptions will only be purposes
either required by law or needed to allow C to execute an “unblock” command. We call
them “mandatory purposes”, and if a data element is needed for at least one mandatory
purpose we call it “protected data”. The set of mandatory purposes is likely to be time-
dependent. E.g., a transaction might end such that protected data becomes optional over
time. In this case an earlier block (or delete) might have a delayed impact on such data.
In our initial scenario we assumed an all-or-nothing scope for “block” and “unblock”.
A real implementation might give the user some choices. For instance, all data might be
sorted into a few categories, and block/unblock and delete might be individually offered
for each category. In the most extreme case, each data item can be blocked, unblocked
and deleted independently of all other data items. Our technical description covers all
cases, but we believe that few all-or-nothing choices for data groups are probably the
most usable and thus most relevant case.

“Delete identity” is like “block identity” except that the effect cannot be reversed.

2.3 Related Technologies

Our proposal is related to privacy controls for individuals as well as privacy manage-
ment based on privacy policy languages. Privacy policies fall into three main categories
(see Fig. 3): Privacy notice from enterprise to consumers [12], privacy preferences of
individuals [1], and policies governing data handling inside an enterprise [5,9], The
policy formalism used for explaining our mechanisms focuses on privacy notice and
only provides high-level constraints for the enterprise internal use. The core goal of
the formalism given is to provide an easy-to-understand formalism to describe the data
flows between web-sites as well as a high-level summary of their site-internal use. Our
simplified approach to policies can be augmented by detailed data types [12] and by
mechanisms to validate whether the policies actually enforced satisfy the published
promises [11,8,2].

Besides privacy policies, many existing concepts that enhance end-user control relate
to our approach. In the sequel, we discuss some of them.

Unsubscribe. Many subscription-based information services, like electronic newslet-
ters, allow customers to unsubscribe explicitly. The meaning is obvious: unsubscribe
terminates the service for this customer, and in many cases the basic customer record
will be automatically deleted after some time. Unlike block, unsubscribe has no reverse
operation (subscribing again does not recreate the old customer record such as an inter-
est profile, but generates a new one). It has no transitive semantics (unsubscribe has no
impact on other service providers who might have received the subscription information

222 M. Schunter and M. Waidner

Notice

PII+

Consent

Policy

PII+Policy’

Customer Enterprise 1 Enterprise 2

Policy 2Policy 1Preferences

Fig. 3. Privacy policies and negotiation types

– this is actually a very common scenario with free subscription services), moreover, it
also has no meaning for data beyond the basic customer record (e.g., if the service is a
forum or newsgroup then all postings will still be available to all other subscribers).

Opt-in and opt-out choices. Organizations are supposed to specify the purposes for
which they collect personal data. A popular way to specify those purposes is to structure
them into a multiple-choice menu. For each menu item the user can say “yes”, i.e., opt-
in, or “no”, i.e., opt-out. Often users can modify their choices at any time. Opting-out
from a purpose is very similar to blocking, and subsequently opting-in again is very
similar to unblocking. But there are differences:

– Opting in/out has no impact on other organizations. This is the same situation as
with unsubscribe. One might argue that many proposals for privacy authoriza-
tion systems suggest that policy changes must propagate (“sticky policies”), and
opt-in/opt-out choices are elements of a privacy policy and thus should be sticky,
too.

– Opting in/out impacts purposes only. For instance opting out from receiving a
newsletter does not make the address inaccessible nor does it touch the history
of how the customer reacted to previous newsletters. It just withdraws the organi-
zation’s right to use the address for sending out a newsletter. Our approach is more
general, in that it allows opt-in/opt-out for arbitrary elements of a concrete access
control list.

– We also suggest specific implementations for opt-in/opt-out that have not been sug-
gested in this context before. We suggest to off load storing or protecting data
needed to unblock or opt-in from the organization to the user.

Several other technologies, such as content management and databases, are related
in the sense that they provide functions that would make it easier to implement our
concepts.

3 A Simple Policy Model for Local Privacy Enforcement

We now formalize the semantics of the proposed privacy panel. We start with a very
basic definition. Consider an organization o that stores data types D = (d1, . . . , dn)
about a user U . There is a set of actions A = (a1, . . . , am) that can be executed on
those data, and as a result the data might change, new data might be created, or old data

Simplified Privacy Controls for Aggregated Services 223

might be deleted.2 For now we do not assume that data is forwarded (this function will
be added in the next subsection).

The access control list ACLo ⊆ A × 2D of an organization o defines the set of
data δ items on which each given action a may be performed. We assume that if (a,
δ) ∈ ACLothen a has no undesired impact on any data outside δ. This is a very sim-
plified model for access control, but it is straightforward to add details and constraints
if needed. We assume that ACLo is maintained by organization o. Organization o also
maintains a subset ACLM ⊆ ACLo which contains all pairs the user cannot block (the
actions serving mandatory purposes3).

The user specifies a set of blocked pairs blockU ⊆ A × 2D and permanently shares
this list with o. “Blocking” a pair corresponds to moving the pair into blockU “un-
blocking” corresponds to removing it from blockU . The actual access control list ACLe

that is used for enforcement is derived from the inputs provided, ACLo, ACLM , and
blockU , as follows:

ACLe := ACLo − (blockU − ACLM).

In this abstract model, the impact of “blocking” a pair (a, δ), i.e., adding it to blockU ,
is the following:

– If (a, δ) /∈ ACLe then there is no immediate impact since the blocked item was
either not in ACLo or else mandatory.

– If (a, δ) ∈ ACLe and (a, δ) /∈ ACLM then the pair (a, δ) is removed by updating
ACLe, i.e., o can no longer execute this action on this data.

The impact of “unblocking” a pair (a, δ), i.e., moving it out of blockU , is the following:

– If (a, δ) /∈ ACLo then there is no immediate impact. The pair was never in ACLe

or it was in ACLo but removed by o.
– If (a, δ) ∈ ACLo then the pair is re-added to ACLe.

Note that blockU is not necessarily a subset of ACLo, i.e., the user might block and
unblock a pair (a, δ) before it is actually added to ACLo. If o adds a pair to ACLo

that is blocked then this pair will not be added to ACLe. Whenever any of the inputs
change, the resulting ACLe needs to be recomputed. An update is triggered by changes
in ACLo, ACLM , or blockU . If o removes a pair from ACLM , but not from ACLo,
then this pair can be blocked in the future. If the pair is also in blockU then the update
procedure will immediately remove it from ACLe.

In our abstract model, blockU is an arbitrary subset of A× 2D. Listing all elements
in blockU is the most obvious way to specify blockU , but is unlikely to cover many
interesting cases. More practically relevant approaches that can be combined are listed
below:

2 Note that purposes can be encoded in actions. If a certain action is a is allowed for one purpose
p but not for another purpose p′, then action (a, p) and (a, p′) would have to be elements of A
to enable distinction.

3 The probably most relevant way to practically define ACLM is to classify A into mandatory
actions AM and discretionary actions AD := A\AM , and define ACLM := ACL ∩AM × 2D .

224 M. Schunter and M. Waidner

– The all-or-nothing approach can be implemented by setting either blockU := A×
2D (everything blocked) or blockU := ∅ (nothing blocked). Note that this does not
block the pairs in ACLM , which in this case should also include all pairs that are
required to perform the unblock operation.

– There might be predefined classes C1, . . . , Cj which cover subsets of of A× 2D,
and U can pick any subset of these classes. In this case blockU is the union of all
blocked classes. This is similar to the opt-in and opt-out grouping of statements
in [12].

– Instead of blocking pairs the user might block data or actions, or classes of data and
actions. If the user wants to block all actions in A∗ and all data in D∗, then we set
blockU := A∗ × 2D ∪ A × 2D∗

. The way to deal with classes of actions and data
is obvious.

These operations allow users to block portions or all of their data. Note that in a user-
centric identity scheme, this blocking/unblocking can be managed by a client-side ap-
plication. This means that if a user visits a site, the required data is unblocked. Once a
user has performed a transaction and logs out, the data is blocked again.

4 Managing Privacy Across Multiple Organizations

Organization o will often share data with other organizations. We now discuss the pro-
tocols that allow an organization to disclose data to another entity and maintain the
privacy of the disclosed data. This includes disclosure and update of data as well as
blocking/unblocking.

Traditional privacy policies allow individuals to specify which actions by which or-
ganization are allowed on which data elements. They often do not contain explicit dis-
closure controls, i.e., they do not specify who is allowed to obtain copies of the data
[15]. To simplify data handling, we pursue a simpler and more flexible approach. Our
concept is split into two parts. Disclosure control prevents data from being disclosed
to parties that are not trusted by an individual user. Usage control then restricts usage
and manages block/unblock for trusted organizations that store data of an individual.
An organization is allowed to use data if the organization is trusted and if the required
permissions have been delegated to this organization.

4.1 Preventing Disclosure to Untrusted Organizations

The best protection of data against an untrusted organization is not to disclose the data to
this organization. This means that either an individual trusts an organization sufficiently
to act as a guardian of his or her data or else the organization should not obtain the data
in the first place. Since this trust depends on the data types, we specify which parties are
in principle allowed to handle given data items. Those parties are then trusted to enforce
the privacy restrictions as specified by an individual.4 Special care needs to be taken to

4 This is similar to and can be augmented by the concept described in [10] where parties are only
trusted to handle data if they implement a privacy layer that is protected by means of Trusted
Computing hardware.

Simplified Privacy Controls for Aggregated Services 225

handle the fact that an organization gets the same data via multiple paths. We model
this concept as a data-flow matrix DF . Given a set of organizations O and a list of data
items D, the data-flow matrix is a subset DF ⊆ O × D that lists the organizations that
are trusted to handle each particular data item.

The corresponding data disclosure can now be specified as follows. Whenever an
organization needs to disclose a set D of data to an organization o′, it computes a data
subset D′ such that d ∈ D′ ⊆ D iff (o’,d) ∈ DF and d ∈ D. The recipient should not
obtain trust information unless it is trusted to protect the corresponding data. Therefore,
the organization computes the subset of the data-flow matrix DF ′ ⊆ O × D′. The
organization o can then disclose D′ and DF’ to its peer o′. If the trust is not sufficient
to pass on critical data for a given transaction, the organization can either cancel the
transaction or else ask the user to extend the data-flow matrix. The handling of the data-
flow matrix will be discussed in more detail in Section 5.2. Note that cryptographic
protection can be implemented on top of this scheme, i.e., if a user releases encrypted
data (say for o′′), the DF specifies who can get hold of and pass on the cipher text. If
it includes o′′, then o′′ can get hold of the data and actually decrypt it. This concept can
be used to tunnel critical data (e.g., SSN, credit cards) through multiple semi-trusted
parties to the actual intended recipient.

4.2 Managing Data Usage Permissions for Disclosed Data

Permissions are handled along a dynamically generated directed delegation graph that
may have cycles. The organizations are the nodes of this delegation graph. Edges cor-
respond to actual disclosures. Each disclosure (edge) delegates a set of permissions
that is a subset of the permissions received. An edge is labeled with the data that has
been disclosed as well as the corresponding metadata. The metadata consists of the re-
duced data-flow matrix DF, a disclosure history, and the associated permissions. The
data-flow matrix defines the maximum set of organizations that can obtain subsequent
disclosures; the history defines via which intermediaries the data was received, and the
permissions are the associated access control lists as defined in Section 3. Blocking
blocks a (subset of) a given edge. An action on data can be performed by a node as long
as any unblocked incoming edge still permits this action. In practice this, for example,
means that a shipment company can use an address as long as some wholesaler still
has an ongoing delivery for this customer. We now formalize this intuition depicted in
Fig. 4.

In order to receive disclosures, each organization needs to store such a triple (history,
data-flow matrix, permissions) for each received disclosure. Note that an organization
can receive the same data via different paths and with different or identical permissions.
The organization needs to store and maintain received disclosures separately in order to
manage the blocking of a single disclosure.

We now explain the permission handling for disclosures that is summarized in Ta-
ble 1 in more detail. Permissions of a given organization o are formalized by a triple
(ACLo,ACLM , blockU) that contains the access control list, the list of mandatory per-
missions, and the blocked permissions.

Disclosure and Delegation: Let us assume that an organization o holds data d with
permissions (ACLo, ACLM , blockU) received via a single edge, and intends to

226 M. Schunter and M. Waidner

ds

B

W

S1

S2

Delegation W

Delegation B’

Delegation B

Delegation W’

Delegation B’

Delegation B’’

P

Delegation P

Fig. 4. Dynamic graph of actual delegations for bookstore scenario (S1, S2 are two shipping
providers, “ds” is the data subject and edges are labeled with delegated permissions)

Table 1. Computation of metadata for disclosures

Field Sender o Recipient o′ Constraint
Data dat dat′ dat′ ⊆ dat and (O′ × dat′) ⊆ DF
Data-Flow Matrix DF DF ′ DF ′ ⊆ DF ∩ (O × dat′)
History hist hist′ hist′ := (hist, o)
Access Control List ACLo ACL′

o ACL′
o ⊆ ACLo

Mandatory Permissions ACLM ACL′
M ACL′

M ⊆ (ACLM ∩ ACL′
o)

Blocked Permissions blockU block ′
U block ′

U ⊇ blockU

disclose it to an organization o′. In order to disclose the data, the organization decides
on a subset ACL′ ⊆ ACL of unblocked permissions to delegate. Both organizations
also agree on a set ACL′

M ⊆ ACLM that defines the mandatory permissions. Once
these permissions are defined, the data is disclosed along with the permission vector
(ACLo, ACLM , blockU), a subset DF’ of the data-flow matrix that covers the dis-
closed data, and the history including sender o and recipient o′ as its last two elements.
The disclosing organization o also stores the history to enable later updates or blocking
of the disclosed data. If an organization wants to delegate a data set of data received
via multiple edges, it needs to choose one incoming edge for each data item and break
the data down into multiple disclosure messages – one for each incoming edge. This is
necessary because the incoming data may have different data-flow matrices or different
policies associated with the actual data to be disclosed.

Once an organization has received data of a given data subject ds via one or more
paths, it can compute the actual permissions by combining the permissions along all

Simplified Privacy Controls for Aggregated Services 227

edges. The actual ACL is computed as the union of all incoming sets ACLe that are
computed as specified in Section 3. This formalizes the intuition that data can be used
as long as at least a single organization has delegated the corresponding usage. The
blocking set blockU and the mandatory permissions ACLM are maintained separately
for all in- and outgoing edges. They are considered when updating the individual ACLs
and therefore indirectly influence the corresponding ACLs.

Block/Unblock: There are two types of blocking data. A user can either block informa-
tion via the organization that collected it or else visit the privacy panel of a particular
organization directly to block all or portions of the stored data (no matter where the
data was collected). The first type is a user blocking data that has been released to an
organization o. In this case, the blocking is recursed along the dynamic disclosure path
by updating the policies at each edge. If a user has blocked a set blockU at organization
o, then o examines along which paths the given data has been disclosed and discloses
an updated block ′

U . The subsequent parties then update ACLe for the given edge ac-
cordingly. Note that this will only block the data if the organization has not received
the same data and permissions via another path. The rationale behind this behavior is
that in most cases, from a user’s perspective different paths are seen as independent.
If, for example, a user blocked all data at a given online retailer, the individual would
be surprised if the credit card were rendered unusable also for other online retailers.
Unblocking again updates the permission sets and propagates the permission update.

In the second type of blocking, where a user visits an organization directly (i.e.,
clicks on the privacy panel of an inner node and authenticates), the user will review the
information stored at this organization and can also see for what the information is used
and where it came from. In this case, a user can again block all or portions of the data
usages (except mandatory usages). This is then again propagated along the disclosure
graph. Note that in contrast to the first approach, this enables the user to block any non-
mandatory usage of data at a given organization, regardless of how and where the data
was actually collected.

A special case for permissions and block/unblock are circles in the disclosure graph,
i.e., that permissions are delegated along loops. We resolve this by keeping the his-
tory. This enables the organizations to effectively distinguish original permissions from
permissions that are looped-back.

5 Enhancing User Control

The scheme described so far assumes that the parties in the disclosure set DF correctly
implement the proposed scheme. This includes correct policy enforcement as well as
blocking and unblocking. In this section, we investigate how these trust assumptions can
be reduced to provide a higher level of verifiability and thus security to the individual
end user.

5.1 Increased Transparency

The main benefit of our concept is enhanced transparency. A user can review which
data is stored by whom and to which organizations it has been disclosed. By default, an

228 M. Schunter and M. Waidner

individual customer will handle data via the party to whom the data has been disclosed
initially. This means that the customer can visit one of the previously visited web-sites
and review or block/unblock data. This can include browsing along the disclosure graph.
In the special case that a customer decides to distrust an organization further along the
graph, he or she should directly visit the corresponding privacy panel and then prune
the disclosure tree by blocking or deleting a given branch. Any good implementation
of our method should provide feedback to the user regarding the precise meaning of a
successful or failed block or unblock operation. Since ACLoand ACLM might change
over time, blocking and unblocking can have a delayed impact. The user should be
given the option to be informed about such delayed impact before as well as at when
the impact actually happens.

5.2 Dynamic Trust Management

An important aspect of our concept for multi-organization privacy protection is the trust
management that determines who may obtain which data in the first place. There are
multiple options that can be mixed in practice:

– Enterprise Data-Flow Matrix: A web-site has a fixed set of subsidiaries that are re-
quired for a site to work. E.g., all payments are processed through a given payment
processor. In this case, the site proposes a fixed data-flow matrix and the individual
customer can accept or decline. This is today’s solution.

– Customer Data-Flow Matrix: The customer proposes a data flow matrix to the en-
terprise. The enterprise then dynamically selects providers that are in this matrix.
This service-oriented approach requires that the customer has at least one service
of each type that is required by a given organization. This needs to be validated by
the organization.

– Dynamic Delegation: For this approach, there is no complete data-flow matrix
initially. The customer (via its federated identity management scheme [14] or in-
dividually authorized by a party trusted by the customer) is dynamically asked to
delegate certain sub-services to providers that are trusted by the individual. This
means that the user points to a trusted payment processing service once needed.
Once the organization has obtained permission to disclose certain data, this is dy-
namically added to the data-flow matrix.

– Role-based Delegation: The original matrix only contains roles or groups of or-
ganizations, e.g., partners certified by auditor X, organizations that satisfy certain
privacy requirements, or partners that have signed a privacy protection contract with
the user. This concept is similar to the organizations specified by P3P [12]. How-
ever, the core difference is that our approach allows later review of the data and the
actual organizations that store the data of an individual.

Each of these mechanisms ensures that data disclosure is only permitted to organiza-
tions that an individual user trusts. Revoking trust is done by updating the data-flow
matrix and the access-control matrix. The consequence is that the corresponding orga-
nizations are asked to delete the data they store. If this deletion is not possible legally,
one again needs to distinguish between a default and a mandatory data flow matrix DF,

Simplified Privacy Controls for Aggregated Services 229

where the latter specifies the minimum set of organizations where the data cannot be
revoked. Note that the main impact of removing trust is to prevent storage of data corre-
sponding to future transactions. Without additional audits or control, the actual deletion
of data cannot be verified in general.

5.3 Verifiable Blocking and Unblocking

The preceding sections assumed that organizations “follow the rules”. We now describe
a way to increase the auditability of our solution. Our goal is to enable auditors and users
to validate that all data that is found at an organization has been obtained legally and has
not been blocked. The core ideas are to delete all blocked data, to sign disclosures, to
provide receipts for blocking requests, and to require authorization for any data stored
at the enterprise.

Our first naı̈ve implementation of unblocking merely modifies the access rights with-
out actually protecting the data. This is a valid implementation approach, but has certain
disadvantages:

– Blocking does not add a new layer of defense, i.e., this type of blocking does not
necessarily reduce the risk of unintentional disclosure.

– Blocked data are of no value to the organization, but the burden of maintaining
them is with o. From an economic perspective, a more natural choice would be to
put that burden on the individual customer U .

Offloading the burden of maintaining the data to the user can be done as follows: As a
result of “block”, the organization compiles all data that serves no purpose other than
allowing unblock, and send this data token to the user, in some protected fashion (en-
crypted and authenticated). The user is supposed to store this data, and return it as
part of the unblock token. Delayed impact of block might create new tokens, which
are all sent to the user. This approach adds a second layer of defense and puts the
storage burden on the user. If this storage burden is not considered significant for o,
one can use an alternative approach: U can select a cryptographic key and hand the
(public) key to o, and o uses that key to protect all this data, i.e., storing the data in
its encrypted form without actually knowing the key needed for decryption. Upon un-
block, U hands over the (secret) key to o, and o can decrypt all data needed to perform
unblock.

In both cases, the user achieves an increased level of control. The most important
benefit is that once an honest organization has blocked data, it cannot unilaterally
change its mind. This is important in order to prevent that a bankrupt organization sells
previously blocked data. Next, we discuss this data token approach as it provides a ben-
efit (and thus an incentive) to the organization that implements this approach. In order
to provide accountability for all data that is stored at an enterprise, all disclosures need
to be signed (including data, history, and permissions as described above). This enables
an enterprise to show that all data has been obtained through a legal disclosure path.
When an individual asks an organization to block data, an organization needs to be able
to show that it honored the recursive blocking request. This can be done by protecting
its own data as described above and requiring blocking proofs from all data recipients.

230 M. Schunter and M. Waidner

User Enterprise 1

AuthU(blockU, c)
AuthE1(block’U, c)

Enterprise 2

mE2:=SigE2(block’U, c, time2, Data2)

mE1:=SigE1(mE2, blockU, time1, Data1)

Encrypt

and store mE1

Fig. 5. Example of a blocking protocol

This can be achieved by the protocol depicted in Fig. 5. We assume a confidential chan-
nel between the different organizations to prevent data leakage. The customer initiates
the blocking protocol by sending an authenticated message containing the updated ac-
cess control list blockU and a challenge c. If the enterprise has not disclosed the data
further, it responds by sending a signed response that contains the updated blockU ’ the
time from which it promises to no longer use the data, and the only remaining copy
of the actual data that has been blocked. If parts of blockU have been delegated to one
or more other organizations E2, the organization executes this blocking protocol recur-
sively to block and retrieve the corresponding data. Again, the user will obtain a signed
blocking receipt from each organization that held data. Note that the blocking message
between different organizations is no longer authenticated by the user. Instead, our con-
cept enables all organizations to block delegations they have previously performed. In
the protocol this implies that subsequent blocking messages are authenticated by the
sending organization. Furthermore it implies that these blocks can contain a subset of
blockU if only a subset has been disclosed. Both enterprises then send signed messages
with the blocking time to the user. The user encrypts and stores the data.

To unblock the data, the user returns the blocking token mE1 (and mE2) and an
authenticated message that allows the organization to unblock the data. The organiza-
tion then recursively recovers the data from this backup. Note that the authorization to
unblock is needed to enable the enterprise to prove that the unblock operation was le-
gitimate, i.e., that it did not cheat the user by sending a blocking token while continuing
the usage of the data.

Usually the data used to authenticate U is part of the data protected by our concept
(i.e., part of D), and authenticating U is implemented through one or more of the ac-
tions in A. To facilitate unblocking it is appropriate to add all pairs (a, δ) representing
authentication to the set ACLM , i.e., to prevent U from accidentally blocking authenti-
cation as long as other data can still be blocked. Another approach is to allow blocking
of the identity and authentication information. In this case, the user would be required
to unblock its identity to perform additional block operations.

Note that without additional assumptions it is impossible to achieve complete verifi-
ability against an organization that is completely untrusted. Known assumptions that
enable verifiable deletion are a limited amount of memory [13], or the assumption

Simplified Privacy Controls for Aggregated Services 231

that data is stored only in a well-defined trusted infrastructure [3], or an infrastructure
that supports secret sharing with at least one honest storage server [16].

5.4 Protection of Mandatory Data

In general, data that is mandatory cannot be deleted or blocked. This is either caused
by pending transactions that need the data or else by regulatory requirements. In the
first case, blocking would terminate the transaction and usually is not desirable. In the
second case, usage can be limited to certain well-defined operations such as an annual
audit, or following a court order.

We now sketch additional means to offer similar protection for mandatory permis-
sions. The core idea is that the limited amount of mandatory data can be protected by
mutually trusted entities. From the enterprise’s perspective, this trustee guarantees the
legally required availability of the data. From an end-user perspective, the entity ensures
that the usage is limited to the pre-defined purposes. Potential options for implement-
ing these trusted third parties are secure hardware (smartcards, secure coprocessors),
additional trustees (either for secret decryption keys or the data itself), or special stor-
age devices such as a secondary write-only data store that only reveals data under the
conditions specified. One example are log-files that are kept for auditing purposes. In
this case, the data can be public-key encrypted and the decryption key is to be escrowed
between the user, the organization, and a third party. If the legal pre-conditions are met,
the user pre-authorizes this third party to release its key share to the organization in
order to meet the regulatory requirements.

6 Conclusion

We have presented a simple concept for increasing transparency and control over the
use of data for individual end-users. The core idea is a standardized privacy panel that
allows users to review the data that has been stored about them. In contrast to earlier
approaches, we describe how to enable temporary suspension of personal information.
This blocking renders data unusable while a certain service is not in use. This protects
the individual from accidental misuse. Furthermore, we separate data-flow restrictions
from data usage restrictions. The rationale is that data should only be disclosed if the
recipient is trusted to enforce the associated policies.

Acknowledgments

We thank the anonymous reviewers for valuable comments that enabled us to substan-
tially improve the final version of this paper. We are grateful to Charlotte Bolliger
for improving the readability and presentation of this paper. Finally, we would like
to thank our colleagues Mike Nelson and Jane Johnson for helpful discussions on pri-
vacy in service compositions. This work was partially supported by the OpenTC project
www.opentc.net that is funded by the 6th framework programme of the European
Commission.

www.opentc.net

232 M. Schunter and M. Waidner

References

1. Cranor, L., Langheinrich, M., Marchiori, M.: A P3P Preference Exchange Language 1.0
(APPEL1.0); W3C Working Draft (April 15, 2002),
http://www.w3.org/TR/P3P-preferences/

2. Backes, M., Bagga, W., Karjoth, G., Schunter, M.: Efficient Comparison of Enterprise Pri-
vacy Policies. In: 19th Annual ACM Symposium on Applied Computing, Nicosia, Cyprus,
March 14-17, 2004, pp. 375–382. ACM Press, New York (2004)

3. Badishi, G., Caronni, G., Keidar, I., Rom, R., Scott, G.: Deleting Files in the Celeste Peer-
to-Peer Storage System. In: 25th IEEE Symposium on Reliable Distributed Systems (SRDS
2006), pp. 29–38. IEEE Press, Los Alamitos (2006)

4. Barth, A., Mitchell, J.C.: Enterprise Privacy Promises and Enforcement. In: Proceedings of
the 2005 Workshop on Issues in the Theory of Security, Long Beach, California, pp. 58–66.
ACM Press, New York (2005)

5. Backes, M., Pfitzmann, B., Schunter, M.: A Toolkit for Managing Enterprise Privacy Policies.
In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, pp. 162–180.
Springer, Heidelberg (2003)

6. Chaum, D.: The Dining Cryptographers Problem: Unconditional Sender and Recipient Un-
traceability. Journal of Cryptology 1/1, 65–75 (1988)

7. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion Router. In:
Proceedings of the 13th USENIX Security Symposium (August 2004)

8. Karjoth, G., Schunter, M., Van Herreweghen, E.: Enterprise Privacy Practices vs. Privacy
Promises - How to Promise What You Can Keep. In: 4th IEEE International Workshop on
Policies for Distributed Systems and Networks (Policy 2003), Lake Como, Italy, June 4-6,
pp. 135–146 (2003)

9. Karjoth, G., Schunter, M.: A Privacy Policy Model for Enterprises. In: 15th IEEE Com-
puter Security Foundations Workshop (CSFW), pp. 271–281. IEEE Computer Society Press,
Washington (2002)

10. Kinateder, M., Pearson, S.: A Privacy-Enhanced Peer-to-Peer Reputation System. In:
Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) E-Commerce and Web Technologies.
LNCS, vol. 2738, pp. 206–215. Springer, Heidelberg (2003)

11. Levy, S.E., Gutwin, C.: Improving Understanding of Website Privacy Policies with Fine-
Grained Policy Anchors. In: WWW 2005, Chiba, Japan, May 10-14, pp. 10–14. ACM Press,
New York (2005)

12. Cranor, L., Dobbs, B., Egelman, S., Hogben, G., Humphrey, J., Langheinrich, M., Mar-
chiori, M., Presler-Marshall, M., Reagle, J., Schunter, M., Stampley, D.A., Wenning, R.:
The Platform for Privacy Preferences 1.1 (P3P1.1) Specification; W3C Working Group Note
(November 13, 2006),
http://www.w3.org/TR/2006/NOTE-P3P11-20061113/

13. Pfitzmann, A., Pfitzmann, B., Schunter, M., Waidner, M.: Trusting Mobile User Devices and
Security Modules. Computer 30/2, 61–68 (1997)

14. Pfitzmann, B., Waidner, M.: Federated Identity-Management Protocols. In: Christianson, B.,
Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols. LNCS, vol. 3364, pp. 153–174.
Springer, Heidelberg (2005)

15. Stufflebeam, W., Antón, A.I., He, Q., Jain, N.: Specifying Privacy Policies with P3P and
EPAL: Lessons Learned. In: Proceedings of the 2004 ACM Workshop on Privacy in the
Electronic Society, WPES 2004, Washington DC, USA, October 28 - 28, 2004, pp. 35–35.
ACM Press, New York (2004)

16. Shamir, A.: How to Share a Secret. Communications of the ACM 22/11, 612–613 (1979)

http://www.w3.org/TR/P3P-preferences/
http://www.w3.org/TR/2006/NOTE-P3P11-20061113/

Performance Comparison of Low-Latency

Anonymisation Services from a User Perspective

Rolf Wendolsky, Dominik Herrmann, and Hannes Federrath

University of Regensburg, 93040 Regensburg, Germany

Abstract. Neither of the two anonymisation services Tor and AN.ON
clearly outperforms the other one. AN.ON’s user-perceived QoS is gen-
erally more consistent over time than Tor’s. While AN.ON’s network
latencies are low compared to Tor, it suffers from limitations in band-
width. Interestingly, Tor’s performance seems to depend on the time of
day: it increases in the European morning hours. Utilising AN.ON’s re-
porting of concurrently logged-in users, we show a correlation between
load and performance. The reported number of users should be adjusted,
though, so that it serves as a better indicator for security and perfor-
mance. Finally, the results indicate the existence of an overall tolerance
level for acceptable latencies of approximately 4 seconds, which should
be kept in mind when designing low-latency anonymisation services.

1 Introduction and Motivation

Several anonymisation services for low-latency communication have grown up
from research projects recently: among them are the well-known systems AN.ON
[3] and Tor [17]. This paper focuses on the performance of the services for web
surfing from a user perspective.

Although AN.ON and Tor are based on common building blocks (e. g. so called
mixes [6], which relay multiply encrypted traffic from a client to a server), they
differ in various technical attributes such as structure, threat model and appli-
cation range. AN.ON uses a limited set of cascades, each consisting of predefined
mixing nodes. In contrast, Tor relies on a large amount of nodes from which ran-
dom circuits are constructed in real-time. As the user base is usually hundreds
or thousands of times bigger than the amount of nodes used for relaying traffic,
performance issues may arise.

It has been shown that performance, especially latency, is an anonymity-
relevant parameter [11]. We can assume that many users are not able to evaluate
the real security of an anonymisation service [5]. Therefore, their decision to
use a specific service may highly depend on its overall performance: Only few
people are willing to use a slow service, and, regardless of any sophisticated
cryptographical techniques, such a service might not provide any anonymity at
all. Consequently, the performance from a user perspective might serve as an
important indicator for the overall quality. Moreover, performance evaluations
can be used to identify characteristics of the different approaches, and – obviously
– they allow the evaluation of tuning measures.

N. Borisov and P. Golle (Eds.): PET 2007, LNCS 4776, pp. 233–253, 2007.

234 R. Wendolsky, D. Herrmann, and H. Federrath

In this paper, we will provide an empirical study regarding the relation be-
tween performance and the number of concurrent users. Based on that we will
present the results of a comparison of AN.ON and Tor from a user perspective
and try to explain the source of any differences found. We will show that a näıve
comparison of average throughputs and delays is hardly sufficient, but conclu-
sions can be drawn with the help of inferential statistics nevertheless. Our results
indicate the existence of an overall performance threshold. This means that users
are not willing to use a service which fails to meet this threshold.

We will introduce the evaluation scenarios for our performance tests in sec-
tion 2 and present our methodology for data collection in section 3. Section 4
contains a short description of the statistical methods used during analysis. The
results of our evaluation of AN.ON and Tor are presented in section 5. We suggest
areas for future research in section 6, while section 7 summarizes our findings.

2 Performance Indicators and Evaluation Scenarios

In this section we will present the relevant performance indicators and our eval-
uation scenarios. For the performance evaluation of the anonymisation services,
we simulate the behaviour of a typical WWW-user who (1) requests web sites
and (2) downloads files. We identified two performance indicators, namely la-
tency and bandwidth.

The bandwidth (KBytes/s) indicates how fast data packets may be transmit-
ted on a communication channel. The latency (milliseconds) corresponds to the
roundtrip time of a network packet. Ideally, the latency is independent from the
bandwidth. For large files it is almost irrelevant, whereas retrieving a web site
(with many small objects) can be slowed down by high latencies substantially.

In order to profile the aforementioned indicators, we set up different scenarios.
A scenario is characterised by two parameters: type of simulation and URL lan-
guage. The type of simulation is either (1) a test with different web sites contain-
ing a (large) number of small objects {WEB}, or (2) a test with fixed-size down-
loads {DL}. The separation into different URL languages is a heuristic method
to measure system performance in a local area, e. g. Germany, or world-wide. For
our research, we split the tests into German {DE} and English {EN} content
language. While the English pages can be used for a fair comparison of different
anonymisers, the German sites allow profiling the AN.ON service from a local
perspective.1 The URLs were chosen from the most popular web sites accord-
ing to Alexa [2] and the downloads according to downloads.de/downloads.com
respectively (cf. table 7). Table 1 lists the basic scenarios.

3 Data Collection Methodology

In this section we will describe our methodology for collecting performance
data from anonymisation services based on an example of the Tor network and
1 All current AN.ON servers reside in Germany, whereas Tor is distributed throughout

the world.

Performance Comparison of Low-Latency Anonymisation Services 235

Table 1. General attributes of the basic scenarios

Simulation WEB DL
Language DE EN DE EN

Total URLs / scenario 11 14 3 3
Average requests / scenario 398 309 3 3
Average requests / URL 33.17 20.6 1 1
Average KBytes / scenario 1267 987 1520 1702
Average KBytes / URL 105.58 65.8 506.67 567.33

AN.ON. We will start off with an overview of our evaluation setup and the
evaluated services. The major part of this section will present our data quality
measures.

3.1 Test Suite Overview

There are some free tools available to measure proxy or server performance
[10,15]. Unfortunately, they proved not suitable for the evaluation of anonymisa-
tion services. They focus on other applications and consequently lack important
features such as failure tolerance. In the end, we decided to write a test suite
specifically designed to meet our needs.

As we evaluate the services from a user perspective, the two performance
parameters mentioned, bandwidth and latency, cannot be determined exactly:
There are too many influences not under our control. Therefore, we approxi-
mate the performance of the services with the help of the two observable param-
eters throughput and initial delay. The throughput is calculated by dividing the
amount of received bytes by the time needed for the data transmission. The ini-
tial delay is the time difference between sending the HTTP request and receiving
the first chunk of the response.

Our test suite perfeval2 is written in Perl (about 2.500 lines of code)3. The
scripts retrieve a set of URLs via HTTP (non-recursively) and calculate through-
put and initial delay for each HTTP request. All recorded data of a session is
aggregated into a test case.

We utilise the Perl library LWP::ParallelUA [12] which can handle simultane-
ous connections. Thus, we are able to simulate the behaviour of a web browser:
First, perfeval downloads the HTML page, and then it fetches all the embedded
objects in parallel. In order to prevent proxies or web caches from influencing
the results we send a Cache-Control:no-cache HTTP header [14] along with the
request.

2 We were running the test suite on two WindowsXP workstations with ActivePerl
v5.8.7.815 [1]. The workstations were connected to the Internet directly and had
public IP addresses.

3 http://www.jondos.de/downloads/perfeval.zip

http://www.jondos.de/downloads/perfeval.zip

236 R. Wendolsky, D. Herrmann, and H. Federrath

3.2 Scope of the Evaluation

Table 2 lists the three services we evaluated with perfeval. In the rest of this
paper we will refer to them with the presented acronyms. We also use a control
connection (DIRECT) for assessing the performance of the Internet connection
used during testing.

Table 2. Evaluated systems

DIRECT Direct web access without any proxy
TOR Tor client v0.1.0.16, Privoxy v3.0.3
DD AN.ON cascade Dresden-Dresden (JAP v00.05.078)
CCC AN.ON cascade Regensburg-CCC (JAP v00.05.078)

Privoxy was configured with the option toggle 0 in order to disable all of its
filtering rules. The two mentioned AN.ON cascades were chosen because of high
stability and high number of users at the time when we started the test.4 The
test run started on February 15 2006, 6:00 p. m., and ended on February 26 2006,
11:59 a. m. (both Berlin local time 5) by manual interruption. Thus, we got test
data for 10 complete days and 18 hours, that corresponds to 258 hour-based
test cases for each combination of scenario parameters and tested systems. We
therefore have 4128 test cases altogether.

For the scope of this article an individual web site or a file download is rep-
resented by its URL. Each URL may lead to a number of HTTP requests: Typ-
ically, a web sit causes additional requests (for the HTML page and all its em-
bedded objects), whose number typically differs over time, whereas a download
causes exactly one HTTP request.

3.3 Data Quality Measures

In order to get statistically utilisable results for measuring the tested services,
the collected data should not be considerably influenced by

(a) external factors jeopardizing the validity of the test cases like downtimes of
the network, downtimes and failures of services, HTTP errors reported by
web sites, and errors in the evaluation software itself,

(b) bias introduced by the observation itself like concurrent tests on the same
anonymisation service, concurrent test requests of the same resource, and
performance fluctuations on the computer where the test software runs,

(c) influences through fluctuations during the test like performance fluctuations
of requested resources and fluctuations of the total amount of requested
data,

4 At that time the remaining two AN.ON cascades were used for testing purposes only,
and were neither stable in structure nor in code.

5 Note that Germany has one single time zone.

Performance Comparison of Low-Latency Anonymisation Services 237

(d) performance tampering through HTTP redirects,
(e) performance limit introduced by the Internet conection,
(f) varying performance throughout the day.

These influences have to be mitigated before and during the test. After that,
the collected data must be examined for influences by the aforementioned factors.
If at least one of those has a non-negligible influence, the corresponding data is
probably not usable for any statistical analysis. We assume an influence as non-
negligible if the ratio of (possibly influencing) “critical” cases to “good” cases is
higher than 5%.6

In short, we found that our test data is of high quality regarding these mea-
sures. A more detailed description of our approach to measure data quality is
presented in the following sections.

External factors. Single erroneous test cases resulting from a bad implemen-
tation of the test software may be discovered by looking for extreme values in
the number of HTTP requests (which should be the same for each test case),
the initial delay and the throughput.

HTTP errors, service failures, network and service downtimes may lead to
missing or unintentionally influenced cases. For each unsuccessful HTTP request
(i. e., the status code of the HTTP indicates a failure), we have to determine
whether the source of the problem is the webserver or the network (i. e., the
anonymisation service or the Internet connection). We will refer to the former as
errors, to the latter as failures. This differentiation is important to measure the
“quality” of an anonymisation service. Our software implements a sophisticated
algorithm to differentiate errors from failures:

An unsuccessful HTTP request will be flagged as an error, if all of the following
conditions apply immediately after the HTTP response has been received:

– a connection to the webserver/proxy can be established successfully
– a HTTP test request can be sent over the network
– a corresponding HTTP response is received
– the HTTP status code is not 200 OK (or something similar)
– the HTTP status code is not 502 Service temporarily overloaded, or 503

Gateway timeout

Otherwise, the unsuccessful request is probably a failure, but further exami-
nations are necessary. This is especially true for responses with status codes 502
and 503, which can be issued by the webserver as well as by the proxy server. If
the webserver is the originator, the request should be flagged as error, otherwise
as failure. Timeouts, i. e., delays exceeding 60 seconds, are the most common
type of failures.

Table 8 lists the number of cases missing either due to software errors or
because of network or service downtimes. Compared to the total number in the

6 Note that this is a heuristic approach. The quality measures are ratios and not
probabilities as in statistical tests.

238 R. Wendolsky, D. Herrmann, and H. Federrath

sample, they are negligible. It also shows that almost all failures occur for DD,
but as less than 5% of all requests are affected, we still treat external influences as
negligible. This finding indicates hardware or network problems on the AN.ON
DD cascade, though. Its operators have not been aware of that until now.

The number of errors is uncritical for all but one case: the error ratio on
the CCC cascade for English downloads is about 9%. That means that a lot
of downloads were skipped, probably due to service-specific blockings by the
web site operators (e. g. by blacklisting the IP of the last mix of the cascade).
Nevertheless, this influence is limited to reducing the sample size for this service.

Bias introduced by the observation itself. The tests for web surfing /
downloads together were composed to be completed in less than 30 minutes for
each language. In order to force comparable and periodic hour-of-day-based time
intervals from 0 to 23 (Berlin local time), we put a hard limit of 60 minutes on
the total duration of a language test. For each test case, all URLs were processed
sequentially so that no interference between them was possible7. As the DE and
EN tests should not interfere with each other, we performed these test cases on
two separate machines, the latter one starting with a time offset of 30 minutes.
Figure 1 shows the course of events during the performance evaluation.

Table 8 shows that the hard limit of one hour was never reached in our exper-
iment and that a 30-minute-overlapping did not occur more often than in 5% of
the test cases. These influences are therefore not seen as critical.

time

DE

EN

DIRECT
AN.ON

DD
AN.ON
CCC

TOR

00:00:00 00:30:00

DIRECT
AN.ON

DD
AN.ON
CCC

TOR

01:00:00

DIRECT
AN.ON

DD

typically <30 minutes hard limit for DE cycle #1

DE cycle #1 DE cycle #2

EN cycle #1

...
individual

perfeval.pl sessions

Fig. 1. Test sequence for performance evaluation

Influences through performance fluctuations. In order to avoid perfor-
mance influences from slow web servers that could lead to wrong conclusions in
the analysis, the measurements of the individual URLs are aggregated into one
test case for each scenario. Accordingly, we do not try to evaluate the service
7 Note that HTTP requests for each requested web site are done concurrently, but

this is what a typical web browser would do as well.

Performance Comparison of Low-Latency Anonymisation Services 239

performance regarding single URLs (although this would be possible with our
result files, of course).

Another possible influence is related to the amount of data received in each
test case. To make the cases of one scenario comparable, they should be of
equal size. We compared the median and the interquartile range8 (IQR) of the
downloaded bytes for each service with the median and IQR of all services to
analyse this influence.

Table 8 shows that the ratios of all medians are negligible. Although there are
some problems with English downloads (causing a huge IQR ratio for the CCC
cascade), they do not affect the median. Therefore, our analysis suggests that
we have indeed collected similar amounts of data for the different services.

Note that measuring performance fluctuations within the infrastructure of the
anonymisation service is beyond the scope of this paper. In particular, we are
not trying to measure the performance of individual nodes or one anonymity
service as a whole. For Tor, we have to trust the node selection algorithm of its
client software – we are looking at performance from a user perspective after all.

HTTP redirects. Our evaluation software honours HTTP 301 and 302 redi-
rect status codes. Although this behaviour is necessary for the imitation of a web
browser, it introduces a new challenge: Our test might be influenced by server-
side redirects (geolocation), which would undermine the geographic separation
introduced by the URL language scenario parameter.

It is rather difficult to rule out this influence completely as we cannot con-
trol the behaviour of the web servers. Of course, our software does not send any
Accept-Language headers which would give away any information about its lo-
cation or preferred language, nor does it interpret JavaScript code in the HTML
pages which could be used to query language-specific browser attributes. But there
are still more sophisticated ways for geolocation, for example by querying the
WHOIS database for the IP address of the sender of the HTTP request. Obviously,
it is impossible to fully prevent a webserver from delivering adapted versions of the
requested content to the client. It has been observed that Tor (with its world-wide
network of exit nodes) is subject to this phenomenon [18]. We screened the eval-
uation data to make sure that no geolocation was employed, though.

Note that language adaption is not as big a problem as it seems. HTTP
requests which are automatically being redirected to a server located in close
vicinity of the client are a far more intriguing threat. We have examined the
URLs for the [EN] scenario and could not find any indication that this form of
redirection was employed by any web site. Of course, some sites utilise round
robin DNS entries in order to distribute the load on several webservers (e. g.
google.com). But such procedures shouldn’t affect the performance evaluation
because their influence is averaged by the large amount of test cases.

Performance limit introduced by the Internet connection. If the local
area network suffers from performance fluctuations, it may influence the observed
8 The interquartile range is the difference of the upper 75% and the lower 25% quartile.

It is a robust measure for the standard deviation of frequencies.

240 R. Wendolsky, D. Herrmann, and H. Federrath

I(St) =

{
0 if Thcrit(St) ≥ 0, small or no influence
1 if Thcrit(St) < 0, possible high influence

w.r.t

Thcrit(St) = Th(DIRECTt) − Th(St) − IQRB(DIRECT)

2
where

S ∈ {DIRECT, TOR, DD, CCC}
t := time (day and hour)

St := test case of S at the time t

IQRB(DIRECT) := Interquartile range of throughput of DIRECT

Th(St) := measured throughput of St

Thcrit(St) := critical throughput of St

I(St) := possible influence of DIRECT on St

Fig. 2. Evaluating performance influences of the network connection

data as well. Network-caused performance breaks in all systems could be mis-
interpreted as a common attribute. For example, if the network is not faster
than the slowest anonymisation service, all systems would look the same. There
is no influence if the local area netwok offers better performance than the fastest
system at all times.

The basic idea to estimate the possible influence of the network (DIRECT)
is to analyse all single test cases of all tested systems for this possible influence.
We call the ratio of the number of all cases with a non-negligible influence to the
total number of cases critical influence ratio. If this ratio is, for a scenario, higher
than 5%, we call the influence of the network on the scenario non-negligible.
Otherwise, we assume that there is no influence of the network on this scenario.

To calculate a level of non-negligibility, we suggest to evaluate all test cases
by their throughput, separately for each scenario, by the formula presented in
figure 2. This approach basically calculates the difference between the through-
put measured for the network at a given hour and the throughput of a given
test case in this hour. As a measure for the standard deviation of the network’s
bandwidth, we also provide the interquartile range for its througput. We sub-
tract half of its value, as only the diminishment of the network’s bandwidth is
critical, and call the resulting value critical throughput for this test case. If the
critical throughput is greater than zero, we assume a low possibility for network
interference. Otherwise, the network influence is assumed to be non-negligible
for this test case. As shown in table 8 (critical throughput influence ratio), we
found a non-negligible network influence for 5 out of 12 scenarios. This means
that care must be taken when these scenarios are analysed, as at least some
clipping phenomena9 are expected.

9 Clipping means that some performance curves will have a hard break in the peaks.

Performance Comparison of Low-Latency Anonymisation Services 241

Varying performance throughout the day. An anonymity service saturated
with a big and distributed user group is expected to show a normal distribution
in user numbers, bandwidth and latency for each hour and day. In reality, though,
the user groups may be heterogenous and therefore have a strong influence on
performance over time. Before statistically analysing and comparing services, it
is therefore useful to exploratively identify time-dependend trends in the user
behaviour.

During the performance evaluation we retrieved the real-time number of con-
current users provided by the AN.ON services for further analysis. We identified
two major trends:

1. The user numbers seem to follow a sinusoidal curve with vertex at 11 a. m.
(cf. figure 5). Given that most users of AN.ON are located in Europe [8],
this means that the majority of them is using the service during the day and
not during the night.

2. The variables throughput and delay seem to be normally distributed between
1 p. m. and 9 p. m. Therefore, the influence of varying loads on the AN.ON
services is expected to be minimal in that time period.

Therefore, we decided to introduce a new scenario parameter daytime to sim-
plify the comparison of AN.ON with Tor, which is more equally distributed over
the whole day. daytime has the values morning (M) and afternoon (A), defined
as the hour-of-day intervals 1-9 a. m. and 1-9 p. m. (Berlin local time). All test
data from the remaining time periods was discarded.

4 Statistical Methodology for Analysis and Comparison

For distinguishing differences in our sample from “random noise”, we performed
thorough statistical analyses. This section provides a short explanation of the
statistical background needed to understand the results presented in section 5.

4.1 t-tests

In order to compare two samples, we use Student’s t-test, which is very robust
against violations of the normality assumption. In this paper we will use t-tests
to compare the mean value of a given parameter (i. e., throughput or delay) of
two samples (i. e., two anonymisation services). The t-test checks whether the
means of the tested parameters differ significantly (hypothesis H1).

t-tests can only be applied under the following assumptions [16]:

1. normal distribution of data
2. homogeneity of variances
3. independent, randomly selected samples

The last assumption is already addressed by the data quality measures men-
tioned in section 3.3. As we cannot expect the data in our samples to be normally

242 R. Wendolsky, D. Herrmann, and H. Federrath

distributed, we employ the Kolmogorov-Smirnov test. If the result of this test is
significant, the data of the sample is not normally distributed and the t-test may
draw incorrect conclusions. Similarly, the equality of the variances is proven with
the Levene test. Even if the Levene test shows significantly differing standard
deviations, the t-test can still be applied. In this case a modified version of the
t-test has to be applied, though.

In the following sections the results of the the t-tests are shown in the column
labelled “Sides”. The higher the number of asterisks (*, **, ***), the more sig-
nificant is the evaluated difference of mean values. A dash (-) indicates that the
test found no significant difference (e. g. table 3).

4.2 Regression Analysis

We analyse possible correlations of two or more metric parameters by a Linear
Regression Analysis. It tests the assumption of a linear correlation between the
dependend parameter yi and the independent parameters xi of the form

ŷi = b0 +
m∑

j=1

bjxij

for all test cases i = 1, 2, . . . , n and the independent parameters j = 1, 2, . . . , m.
In the following sections the confidence in the regression analysis is shown in the
row labelled “Terms”. The higher the number of asterisks (*, **, ***), the more
significant is the estimated influence of the parameter (cf. table 6).

In order to be able to perform a regression analysis, the basic assumptions of
linearity, independence, homoscedasticity and normality must be fulfilled for the
data [7].

5 Evaluation

As mentioned earlier we decided to split the gathered data points into two data
sets according to the time of day. The graphs in figures 5 and 6 show that
user numbers, delay, and throughput follow a typical course for the two AN.ON
services: between 1 p. m. and 9 p. m. the curves are approximately at the same
level, whereas they resemble a quadratic function with a minimum at about
5 a.m. between 1 a.m. and 9 a.m. For the comparison of the services, we focus
on the first of these periods which we call ‘afternoon’, as the AN.ON cascades
are obviously not under full load during the latter one – most users are asleep
during the ‘morning’ hours (cf. figure 6). Combining both the morning (M) and
afternoon (A) data of the AN.ON services and comparing that with the results
of Tor would unduly favor the AN.ON services, as Tor seems to be much less
dependent on daytime.

Anyway, splitting the samples offers another benefit: As described in section
4.1 t-tests operate under the assumption of normally distributed data.10 We
10 Following common practices we use logarithmically transformed values for this

purpose.

Performance Comparison of Low-Latency Anonymisation Services 243

found that within each of the two periods the samples are either normally dis-
tributed or closely resemble a normal distribution. This is not the case if the
samples include data of the whole day, though.

Note that we will only provide results on latencies for the WEB scenarios as
they are irrelevant for downloads.

5.1 Descriptive Statistics for DD, CCC and Tor

Descriptive statistics can provide some first hints regarding the characteristics
of a sample. Our results show that the evaluated systems differ in offered band-
width and latency. We suspect that the differences are partly due to varying loads
(amount of concurrent users) on the anonymisation services. In the rush hours
of the afternoon period, DD has very high user numbers (about 1,700 concurrent
users on average). In contrast, CCC, which had to be selected manually in order
to use it, is used by only 650 users on average. Figure 3 shows the mean values
of delay (a) and throughput (b) together with the observed standard deviations
for the individual services.

In terms of average delays, CCC offers best performance. The mean values
for DD and Tor are considerably worse, but they are too close together for a
meaningful graphical comparison. We will provide more concrete results utilising
t-tests in section 5.3 and 5.4.

On the other hand, Tor might outperform the AN.ON services in terms of
bandwidth. Due to the comparably high standard deviations a comparison with-
out thorough analysis is difficult, though. The AN.ON services tend to offer a
more constant QoS. From the user perspective, this may be an advantage, as
users might not be interested in performance peaks, but rather in adequate per-
formance every time they use the service.

TOR EN

TOR DE

CCC EN

CCC DE

DD EN

DD DE

 0 2000 4000 6000 8000

Delay [ms]

(a) Comparison of delay (A,WEB,EN)

TOR EN

TOR DE

CCC EN

CCC DE

DD EN

DD DE

 0 20 40 60 80 100

Throughput [KByte/s]

(b) Comparison of throughout
(A,DL,EN)

Fig. 3. Comparison of latency in the afternoon

5.2 Tor over Daytime

While performance differences between the morning and afternoon periods are
rather obvious for the AN.ON services (cf. figure 6), this is not that clearly visible
for Tor. As Tor has a global network of nodes and a distributed user base, this

244 R. Wendolsky, D. Herrmann, and H. Federrath

is very reasonable. Looking at the descriptive statistics, though, we found that
the mean values of delay and throughput differed a lot between the morning and
the afternoon period.

The results of the t-test suggest that there is indeed a difference between the
two time periods (cf. table 3 and statistical remarks). Local time may therefore
have a significant influence on local measurements, and Tor might not only prefer
nodes with the highest bandwidth as found in a recent study [4], but also the
nearest (low-latency) nodes. This may be due to an implicit attribute of its
implementation, although there is no sign of such a strategy in the source code.
If so, Tor’s practical anonymity would be affected: The difficulty of mounting a
collusion attack to capture the connections of specific local user groups would
be substantially reduced. Another reason for the observed pattern might be that
the initial assumption of a distributed user community is false. This is difficult
to prove, though, as the Tor network does not provide information about the
location and the number of its users. Accordingly, further research is needed to
explain our observations.

Table 3. Tor: Performance differences morning/afternoon

Scenario Means (exp) Kol.-Smir. T-Test Sides

Sim Lang Measure M A M A Levene T (df) 2 1

WEB DE Log(Delay) 3472 4097 - - 3.2(177) -2.3(177) * *
WEB EN Log(Delay) 3790 4231 - * 1.0(178) -1.8(178) - *
WEB DE Log(Thr) 8.7 6.3 * - 6.9(177)* 2.4(170) ** **
WEB EN Log(Thr) 5.9 4.9 - - 0.6(178) 2.1(178) * *
DL DE Log(Thr) 43.9 34.7 - - 0.0(176) 1.9(176) - *
DL EN Log(Thr) 45.7 39.1 - - 1.5(176) 1.6(176) - -

Significance codes: *** p<0.001, ** p<0.01, * p<0.05.

Remarks on statistical evaluation. According to the results (cf. rightmost
columns of table 3) we have to keep the null hypothesis for half of the scenarios.
On the other hand, according to the 1-sided11 t-test, all scenarios but {DL,EN}
are significant. As the Kolmogorov-Smirnov test is only slightly significant in
only two cases, there is a high confidence in the correctness of the test result.

5.3 Comparison of Tor and DD in the Afternoon

The DD cascade is the common entry point to the AN.ON system for JAP
users. As there is (at the time of measurement) no automatic switching function
between different AN.ON cascades, most unexperienced users (who do not know
how to switch cascades) use the DD cascade. In terms of latency the statistical

11 If there is a good reason – not concluded from the collected data – that one of the
means should be higher or lower than the other one, the p-value (not shown in the
tables) of the t-test may be halved, as only one side of the test is of interest, and
the test returns a higher significance.

Performance Comparison of Low-Latency Anonymisation Services 245

results from table 4 show that there is little difference between DD and Tor in
the afternoon period. This may indicate that there is a tolerance level for this
kind of unexperienced users regarding latency of approximately 4 seconds. A
constant latency above this level seems to deter from using the system.12 This
supplements the results of [11] who found that there is a linear relation between
user numbers and latency by altering the internal delay of the DD service.

Remarks on statistical evaluation. Looking at table 4 we observe that DD
seems to have a slight advantage over Tor in regard to latency, but the difference
is only significant for the {WEB,EN} scenario. But then, Tor obviously offers
higher channel capacities by far (as shown by the {DL} scenarios) and thus
is able to outrun DD in the {WEB} scenarios. The significant difference in
bandwidth shows up in the {WEB,EN} scenario once again: Here, the difference
in bandwidth is not as clear as in the {WEB,DE} scenario however.

Table 4. Comparison of Tor and DD in the afternoon

Scenario Means (exp) Kol.-Smir. T-Test

Sim Lang Measure Tor DD Tor DD Levene T(df) Sig

WEB DE Log(Delay) 4032 3689 - ** 31.7(178)*** -0.3(131) -
WEB EN Log(Delay) 4238 3427 * * 19.4(178)*** 2.1(153) *
WEB DE Log(Thr) 6.30 4.30 - * 22.2(178)*** 3.8(140) ***
WEB EN Log(Thr) 4.92 3.75 - - 17.6(178)*** 2.7(150) **
DL DE Log(Thr) 34.71 10.31 - * 46.1(176)*** 7.7(119) ***
DL EN Log(Thr) 39.13 10.25 - *** 53.8(176)*** 6.7(122) ***

Significance codes: *** p<0.001, ** p<0.01, * p<0.05.

Units: throughput [KBytes/s], delay [msecs].

5.4 Comparison of Tor and CCC in the Afternoon

While the DD cascade is the default in AN.ON’s client software (JAP), the CCC
cascade has to be explicitly selected by the user. Obviously, most users stay with
the default (cf. figure 5). Consequently, this situation leads to lower latencies on
CCC than on DD. Nevertheless, compared to Tor the bandwith of the CCC
cascade is still lagging behind as shown in the {DL} scenarios in table 5. This
is true even for the German downloads, where CCC presumably has an implicit
advantage. Nevertheless, CCC outperforms Tor in the {WEB} scenarios, which
is quite interesting. Apparently, for web surfing extremely low latencies (CCC)
are more critical than sheer bandwith (Tor).

5.5 Correlations of User Numbers and Performance

In this section we will evaluate the influence of load on performance. AN.ON
cascades provide the number of concurrent users at a given time. We will use

12 Note that using the system and being connected to it are two different perspectives.

246 R. Wendolsky, D. Herrmann, and H. Federrath

Table 5. Comparison of Tor and CCC in the afternoon

Scenario Means (exp) Kol.-Smir. T-Test

Sim Lang Measure Tor CCC Tor CCC Levene T (df) Sig

WEB DE Log(Delay) 4032 1091 - - 98.4(178)*** 17.5(96) ***
WEB EN Log(Delay) 4238 1191 * - 91.2(178)*** 18.9(105) ***
WEB DE Log(Thr) 6.30 10.07 - - 25.0(178)*** -9.1(137) ***
WEB EN Log(Thr) 4.92 9.15 - - 23.3(178)*** -11.4(143) ***
DL DE Log(Thr) 34.71 21.40 - - 8.4(177)** 2.4(161) *
DL EN Log(Thr) 39.13 15.84 - ** 25.0(176)*** 4.3(142) ***

Significance codes: *** p<0.001, ** p<0.01, * p<0.05.

Units: throughput [KBytes/s], delay [msecs].

this information to investigate the correlation between user number of both
AN.ON cascades and the performance parameters. We expect a strong positive
correlation between user numbers and latency and a strong negative correlation
between user numbers and throughput. Figure 4 shows this graphically in two
scatter plots.

The performance parameters have been scaled logarithmically as we expect
an exponential influence of the load. The correlation is especially explicit in the
selected morning period which contains data points with widely varying user
numbers, whereas the afternoon period consists of fairly uniform data that is
not suitable for further analysis.

The results of a regression analysis confirm the graphical observations. While
both cascades are similar in terms of delay, their characteristics differ a lot in
terms of throughput. Apparently, user numbers have a much greater effect on
the performance of CCC than on DD. This observation cannot be explained by
a gerenally inferior infrastructure (i. e., less capacity) of CCC, which still has
plenty of unused resources (cf. figure 3). Instead, we assume that users on DD
are considerably less active than those on CCC. A constant and inactive user

 100

 1000

 10000

 0 500 1000 1500 2000

D
el

ay
 [m

se
c]

Number of users

(a) Scatter plot for delay

 1

 10

 100

 0 500 1000 1500 2000

T
hr

ou
gh

pu
t [

K
B

yt
e/

s]

Number of users

(b) Scatter plot for throughput

Fig. 4. Influence of number of users on performance (M,WEB,DE,DD)

Performance Comparison of Low-Latency Anonymisation Services 247

Table 6. Regression model for performance and user numbers for language DE

Scenario

WEB DL

DD CCC DD CCC DD CCC

Param. (ŷi) Log(Delay) Log(Delay) Log(Thr) Log(Thr) Log(Thr) Log(Thr)

Terms
Const. (B0) 2.708*** 2.655*** 1.49*** 1.66*** 2.11*** 2.871***

(0.04) (0.02) (0.04) (0.03) (0.05) (0.05)
Users 5.075*** 5.802*** -5.215*** -10.235*** -6.781*** -25.170***

Model
N 258 256 258 256 256 256
R2 0.612 0.522 0.623 0.626 0.631 0.774
F 404.2*** 277.1*** 422.8*** 426.0*** 433.4*** 870.8***
df 1/256 1/254 1/256 1/255 1/255 1/255

Significance codes: *** p<0.001, ** p<0.01, * p<0.05 .
Standard errors in brackets (). Users: B1 ∗ 104.

base would correspond to the findings in [11] where still some hundred users
were counted on DD even when the service had been made unusably slow.

According to these findings raw user numbers are no suitable predictor for load
and expected performance on a cascade. We therefore suggest that AN.ON ser-
vices should only report the number of active users. Otherwise, users might be de-
ceived in terms of the provided anonymity, which is shown in JAP’s anonymeter.
As adjusted user numbers would correspond to the actual load they could serve
as suitable performance measure. Due to their different characteristics find-
ing a uniform regression model for multiple cascades can be a daunting task,
though.

Remarks on statistical evaluation. As we assume exponential correlations,
all performance parameters are transformed by log10. For the DE scenarios, we
could clearly identify normally distributed (transformed) residuals, while this

Table 7. Domains chosen from Alexa’s[2] top 20 and Downloads.de/.com top 200

Simulation Language Domains

WEB DE google.de spiegel.de amazon.de t-online.de msn.de mobile.de
leo.org freenet.de arcor.de heise.de

WEB EN yahoo.com msn.com google.com passport.net amazon.com
myspace.com microsoft.com bbc.co.uk aol.com blogger.com
go.com alibaba.com cnn.com craigslist.org

DL DE virenschutz.info gratisgames24.de neuesvon.de
DL EN morpheus.com freewarefiles.com macromedia.com

To minimize space requirements, the domains are listed here only, not the downloaded
files or the protocol identifier. Files were requested by HTTP only.

248 R. Wendolsky, D. Herrmann, and H. Federrath

���������	��	�

������
����
������������

����

����

����

����

����

����

���

���

��	�����

�	��������

(a) Curve estimation: Avg. users over one
day {DD}

���������	��	����

������
����
������������

���

���

 ��

���

���

���

���

���

���

��	�����

�	��������

(b) Curve estimation: Avg. users over
one day {CCC}

Hour of day

119753123

M
ed

 C
ur

re
nt

 u
se

rs

1600

1400

1200

1000

800

600

400

200

DD

CCC

(c) Avg. users from 11 p. m. to 11 a. m.

Hour of day

222018161412

M
ed

 C
ur

re
nt

 u
se

rs

2000

1800

1600

1400

1200

1000

800

600

400

DD

CCC

(d) Avg. users from 12 p.m. to 10 p.m.

Fig. 5. User behaviour in AN.ON cascades

is not the case for the EN scenarios, though. As shown in table 6 the expo-
nential correlation is highly significant and explains most of the spread of the
performance parameters (R2 > 0.5).

Performance Comparison of Low-Latency Anonymisation Services 249

Hour of day

21

19

17

15

13

11

9

7

5

3

1

23

M
ed

 in
iti

al
de

la
y

6000

5000

4000

3000

2000

1000

0

TOR

DD

CCC

(a) Avg. delay over one day {WEB,EN}

Hour of day

21

19

17

15

13

11

9

7

5

3

1

23

M
ed

 K
B

/s
 B

ut
to

25

20

15

10

5

0

TOR

DD

CCC

(b) Avg. throughput over one day
{WEB,EN}

Hour of day

21

19

17

15

13

11

9

7

5

3

1

23

M
ed

 K
B

/s
 B

ut
to

200

175

150

125

100

75

50

25

0

TOR

DD

CCC

(c) Avg. throughput over one day
{DL,DE}

Hour of day

21

19

17

15

13

11

9

7

5

3

1

23

M
ed

 K
B

/s
 B

ut
to

200

175

150

125

100

75

50

25

0

TOR

DD

CCC

(d) Avg. throughput over one day
{DL,EN}

Fig. 6. Graphical comparison of different anonymity services

6 Future Work

Maybe our methodology for collecting performance data can be further improved
concerning the robustness of the collected data. As measurements took place
always in the same interval, this might give rise to inherent biases due to repeated
network phenomena being in time with the test cycles. A simple solution might

250 R. Wendolsky, D. Herrmann, and H. Federrath

Table 8. Data quality measures (cf. section 3.3)

Simulation Web browsing Downloads
Language DE EN DE EN

Total test cases 258 258 258 258
30min overlap ratio 0.02 0.05 0.02 0.05
1h breaks 0 0 0 0

TOR 0.04 0.02 0.00 0.18
Critical throughput influence ratio DD 0.03 0.04 0.00 0.05

CCC 0.13 0.28 0.01 0.22

DIRECT 0 1 1 0
TOR 1 0 2 2

Missing test cases DD 0 1 2 0
CCC 0 0 1 0

ALL 1 2 6 2

Median received KBytes ALL 1274.65 997.1 1529.44 1759.69
IQR received KBytes ALL 73.64 56.50 82.00 0.00

HTTP Requests w/o failures 103130 79623 771 774
Error ratio 0.00 0.00 0.00 0.00
Failures DIRECT 0 0 0 0
Median received KBytes ratio 0.00 0.01 0.00 0.00
IQR received KBytes ratio 0.06 0.05 0.00 0.00

HTTP requests w/o failures 102199 79264 768 768
Error ratio 0.00 0.00 0.02 0.02
Failures TOR 0 0 0 1
Median received KBytes ratio 0.00 -0.02 0.00 0.00
IQR received KBytes ratio -0.01 0.02 0.00 0.00

HTTP requests w/o failures 102236 79200 767 772
Error ratio 0.00 0.00 0.00 0.00
Failures DD 17 11 15 27
Median received KBytes ratio 0.00 0.00 0.00 0.00
IQR received KBytes ratio 0.06 0.17 0.00 0.00

HTTP requests w/o failures 102845 79876 771 774
Error ratio 0.00 0.00 0.00 0.09
Failures CCC 3 0 0 0
Median received KBytes ratio 0.00 0.00 0.00 0.00
IQR received KBytes ratio -0.01 -0.13 0.00 ∞

involve randomly changing session time slots or delays (cf. section 3.3), e. g. using
a Poisson distribution as proposed in [13].

Moreover, extending the measured time frame would allow for interesting
long term analyses and could help the developer community to understand the
impact of newly introduced features. Besides, more AN.ON cascades with high
load should be investigated in order to confirm the findings about a user tolerance
level, and for building a common regression model for the cascade performance

Performance Comparison of Low-Latency Anonymisation Services 251

depending on user numbers. This will be more promising in the future, as AN.ON
now has a client-based load balancing, and may take this study as a reason for
only counting active users.

Finally, the time-dependent performance differences of Tor should be further
analysed.

7 Conclusion

Evaluating the performance of Tor and two AN.ON cascades, we have shown that
Tor, a large scale implementation of a free-route mixing protocol, is subject to
unpredictable performance, while AN.ON, implementing typically more central
mix cascades, is able to offer more consistent performance in general.

The suggestions of the Tor community regarding tuning the connection han-
dling policy of the web browser to mitigate Tor’s rather high network latencies
[19] are a reasonable approach. Anyway, the overall performance of Tor is already
sufficient for fast web surfing and downloads. The reason for the performance
differences between morning and afternoon periods remains unclear for now. If
Tor’s routing strategy was really lured into selecting close-by nodes, this would
have considerable implications for the anonymity provided.

In contrast, AN.ON’s advantage in latency is restrained by its limited band-
width and its lack of a load balancing mechanism. Apparently, the DD cascade of
AN.ON suffers from high loads (up to 2,000 concurrent users observed). There-
fore it cannot deliver satisfying performance during the busy afternoon period
where it behaves comparable to Tor regarding latency. The less frequently used
CCC cascade is able to offer low-latency web surfing, but at the price of a smaller
user base and therefore less anonymity.

An important finding is the supposed user tolerance level for latency: Tor,
as a distributed network with many entry points, may automatically adapt to
user expectations regarding latency, and therefore pick up as many users as
possible with the given network structure. Its performance is not expected to
suffer noticeably from single new users connecting to the system. AN.ON, on
the other hand, deters a lot of users by offering a single entry point for new
users right at the tolerance level, as the performance of this entry point is much
more affected by new users than that of Tor.

As this relativelyhigh latency seems tobe toleratedbymostprivacy-awareusers,
i. e., the ones using Tor or AN.ON, this level may serve as a foundation for a new
definition of low-latency in the context of anonymity services. Accordingly, this ob-
servation might be useful for designing new and more secure anonymity protocols.
Further experiments should verify this level and whether it changes over time.

Acknowledgement

We thank Rainer Boehme for his priceless help concerning our statistical analy-
sis, the reviewers for their valuable hints and remarks, and Simson Garfinkel for
helping us as shepherd to give the article the final cut.

252 R. Wendolsky, D. Herrmann, and H. Federrath

References

1. ActiveState ActivePerl: (2006),
http://www.activestate.com/Products/ActivePerl/

2. Alexa Top Sites: (2006-02-06), http://www.alexa.com/site/ds/top sites
3. AN.ON: Protection of Privacy on the Internet (2006),

http://www.anon-online.de
4. Bauer, K., et al.: Low-Resource Routing Attacks Against Anonymous Systems.

Technical Report (2007),
http://www.cs.colorado.edu/department/publications/reports/docs/
CU-CS-1025-07.pdf

5. Boehme, R., et al.: On the PET Workshop Panel Mix Cascades vs. Peer-to-Peer:
Is One Concept Superior? In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS,
vol. 3424, pp. 243–255. Springer, Heidelberg (2005)

6. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 4(2) (1981)

7. Draper, N.R., et al.: Applied Regression Analysis, p. 17. Wiley, New York (1966)
8. Federrath, H.: Privacy Enhanced Technologies: Methods - Markets - Misuse. In:

Katsikas, S.K., Lopez, J., Pernul, G. (eds.) TrustBus 2005. LNCS, vol. 3592, pp.
1–9. Springer, Heidelberg (2005)

9. I2P: (2006), http://www.i2p.net
10. JMeter: (2006), http://jakarta.apache.org/jmeter/
11. Köpsell, S.: Low Latency Anonymous Communication - How long are users willing

to wait? In: Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 221–237. Springer,
Heidelberg (2006)

12. LWP: ParallelUA 2.57 (2006),
http://search.cpan.org/∼marclang/ParallelUserAgent-2.57/

13. Paxson, V.: End-to-end routing behavior in the internet. In: Proceedings of the
ACM SIGCOMM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, pp. 25–38 (1996)

14. RFC2616 Hypertext Transfer Protocol - HTTP/1.1. Section 14.9 (2006)
15. Servertest: (2006), http://softwaregarden.com/products/servertest/index.html
16. Sheskin, D.J.: Handbook of parametric and nonparametric statistical procedures,

2nd edn., p. 247. Chapman & Hall/CRC, Boca Raton (2000)
17. Tor: An anonymous Internet communication system (2006), http://tor.eff.org
18. Tor FAQ: Why does Google show up in foreign languages? (2006),

http://wiki.noreply.org/noreply/TheOnionRouter/TorFAQ#GoogleLanguage
19. Tor Wiki: (2006),

http://wiki.noreply.org/noreply/TheOnionRouter/FireFoxTorPerf

Appendix

The criteria for our choices of URLs were

– server performance much better than performance offered by anonymisation
service, so that the results are not biased by slow servers13

13 As we can never be sure that all servers have an adequate speed during the mea-
surement, we aggregate the download performance of a set of URLs to a test case in
order to mitigate possible influences.

http://www.activestate.com/Products/ActivePerl/
http://www.alexa.com/site/ds/top_sites
http://www.anon-online.de
http://www.cs.colorado.edu/department/publications/reports/docs/CU-CS-1025-07.pdf
http://www.cs.colorado.edu/department/publications/reports/docs/CU-CS-1025-07.pdf
http://www.i2p.net
http://jakarta.apache.org/jmeter/
http://search.cpan.org/~marclang/ParallelUserAgent-2.57/
http://softwaregarden.com/products/servertest/index.html
http://tor.eff.org
http://wiki.noreply.org /noreply/TheOnionRouter/TorFAQ#GoogleLanguage
http://wiki.noreply.org/noreply/TheOnionRouter/FireFoxTorPerf

Performance Comparison of Low-Latency Anonymisation Services 253

– comparable number of URLs and downloaded bytes within the same scenario
– low number of HTTP errors produced by the requested web servers
– average total download time for web sites plus downloads of one language is

much smaller than 30 minutes
– for web site URLs: plausibility of ranking in the Alexa top list

Geolocation detection. As stated in section 3.3, the separation of the EN/DE
scenarios might be jeopardised through geolocation of the client based on its IP
address. Geolocation is performed by the webserver in order to (1) provide a
localised version of a web site, or to (2) enhance the user-view performance by
redirecting the request to a “nearer” webserver.

Localised versions of web sites do not influence our tests unduly, because
latency and bandwidth are not affected. However, if requests are re-routed to
another server, this will change. We applied the following checks to check whether
any form of request re-routing took place:

– We utilised the Unix dig utility and examined the DNS records for the
individual hosts. We found multiple IPs and short TTLs, which indicates
that several sites employed round robin IP rotation. Typically, web sites
under high load use this approach for load balancing, but not for geolocation.

– We requested the individual URLs from our {EN} scenarios with the Unix
wget utility and looked for HTTP redirects, which the webserver might send
during geolocation: No URL used in the scenarios employed HTTP redirects
for their homepage.

Anonymity in the Wild: Mixes on Unstructured

Networks

Shishir Nagaraja

Computer Laboratory
JJ Thomson Avenue, Cambridge CB3 0FD, UK

shishir.nagaraja@cl.cam.ac.uk

Abstract. As decentralized computing scenarios get ever more popu-
lar, unstructured topologies are natural candidates to consider running
mix networks upon. We consider mix network topologies where mixes are
placed on the nodes of an unstructured network, such as social networks
and scale-free random networks. We explore the efficiency and traffic
analysis resistance properties of mix networks based on unstructured
topologies as opposed to theoretically optimal structured topologies, un-
der high latency conditions. We consider a mix of directed and undirected
network models, as well as one real world case study – the LiveJournal
friendship network topology. Our analysis indicates that mix-networks
based on scale-free and small-world topologies have, firstly, mix-route
lengths that are roughly comparable to those in expander graphs; second,
that compromise of the most central nodes has little effect on anonymiza-
tion properties, and third, batch sizes required for warding off intersec-
tion attacks need to be an order of magnitude higher in unstructured
networks in comparison with expander graph topologies.

1 Introduction

As governments pursue large scale surveillance and censorship programs,
anonymity in online communication mechanisms is an increasingly important
requirement. Anonymous communications are also useful in building resistance
against a global passive adversary who can subject the targets to traffic analysis.
Often, an attacker will try to destabilize a network by building a dossier of the
most central nodes, and attacking ones on the top of the list. Traffic analysis of
inter-node communication offers basic tools to collect necessary intelligence in
order to plan an attack.

Seminal work by Chaum [Cha81] introduced mix networks as a technique
to provide anonymous communications where messages are relayed through a
sequence of intermediate nodes called mixes, to make the task of tracing them
through the network as difficult as possible. The essential idea is to make the
inputs of each mix bit-wise unlinkable to its outputs.

Anonymity research conducted since, can be classified into low-latency or real
time systems primarily for Internet browsing such as onion routing [STRL00]
and high-latency or non-real time systems such as mixminion [DDM03].

N. Borisov and P. Golle (Eds.): PET 2007, LNCS 4776, pp. 254–271, 2007.

Anonymity in the Wild: Mixes on Unstructured Networks 255

The topology of a mix network plays an important role in its efficiency and
traffic analysis resistance properties. The mainstream design paradigm that has
emerged so far is that of structured network topologies based on regular graphs.
The theory is that such topologies are amenable to theoretical analysis that
proves they have optimal expansion properties. This leads to a mix network
design that is highly efficient and resistant to traffic analysis. Examples are
onion-routing systems such as TOR [DMS04]that use a complete graph topology,
where a mix can contact every other mix in the network. While such models are
theoretically elegant, the assumption that every node in the network is equally
resourced (as regular graphs necessitate) to handle network traffic loads is their
main drawback.

An alternate paradigm is topology based on unstructured networks, such as
those inspired from social networks. The argument in their favor being that the
incentive to carry traffic is clear and simple - friends carry each-others traffic.
Moreover, no additional resources go into constructing an overlay network since
the pre-existing topology is used by the mix network as well, which works well for
power constrained environments such as adhoc networks and sensor networks.
Legal considerations play an important role too. It is not enough to merely have
a large number of mixes. When hassled by legal requests (such as a subpoena
to hand-over mix server logs to the police), a mix-network where friends route
each others traffic, is likely to have a higher proportion of servers in operation,
as opposed to a synthetic network.

A comparison between the two paradigms needs to address mix-network ef-
ficiency, resilience to corrupt nodes and the loss of anonymity from statistical
disclosure attacks.

In this paper we analyze various types of unstructured networks, especially
social networks and evaluate their suitability as mix topologies. We discuss the
reasons behind using social networks to route mix traffic and we analyze the
suitability of various types of model networks to routing mix traffic and offer a
comparison between them. We also analyze the theoretical bounds on anonymity
such networks can provide in terms of mixing speed and resistance to traffic
analysis. We apply concepts from spectral graph theory to derive the route length
necessary to provide maximal anonymity.

This paper is organized as follows: Section 3 discusses the various topologies
used in our analysis. Section 4, lays out the evaluation framework to measure
the traffic analysis resistance of various topologies. Section 5 discusses the appli-
cation of the framework to various topologies and the results obtained. Finally,
we offer our conclusions in section 6.

2 Related Work

Danezis [Dan03] explored the anonymity provided by expander graph topologies,
this is one of the main sources of inspiration for our work. He established the
thoretical bounds of anonymity for expander graphs, and also showed that they
were optimal.

256 S. Nagaraja

Borisov [Bor05] analyzes anonymous communications over a De Bruijn graph
topology overlay network. He analyzes the deBruijn graph topology and com-
ments on their successful mixing capabilities.

3 Network Models

In this section we give a brief introduction to the network models we wish to
analyze as candidates for mix network topologies.

3.1 Erdös-Rényi Model of Random Networks

One of the earliest models for heterogeneous networks is the Erdös-Rényi (ER)
model [ER59]. Although seldomly found in real world networks, their use has
been popularised by the work of Eschenauer and Gligor [EG02] in designing a
key management scheme for sensor networks.

Here, we start from N vertices without any edges. Subsequently, edges con-
necting two randomly chosen vertices are added as the result of a Bernoulli trial,
with a parameter p. It generates random networks with no particular structural
bias. The average degree 〈k〉 = 2L/N where L is the total number of edges, can
also be used as a control parameter. ER model networks have a logarithmically
increasing average shortest path length l with increasing N, a normal degree
distribution, and a clustering coefficient close to zero.

3.2 Scale-Free Networks with Linear Preferential Attachment

A number of popular peer-to-peer systems are found to have heterogeneous
topologies with heavy tailed degree distributions. The work of Ripeanu [RFI02]
shows that two popular systems, Gnutella [KM02] and Freenet [CSWH00], have
power-law degree distributions.

A variable X is said to follow a heavy tail distribution if Pr[X > x] ∼ x−k L(x)
where k ∈ �+ and L(x) is a slowly varying function so that limx→∞

L(tx)
L(x) → 1.

A power-law distribution is simply a variation of the above where one studies
Pr[X = x] ∼ x−(k+1) = x−α. The degree of a node is the number of links it has
to other nodes in the network. If the degree distribution of a network follows
a power-law distribution it is known as a scale-free network. The power-law in
the degree or link distribution reflects the presence of central individuals who
interact with many others on a continual basis and play a key role in relaying
information.

We denote a scale-free network generated by preferential attachment, by
Gm,N (V, E) where m is the number of initial nodes created at time=t0 and
N is the total number of nodes in the network. At every time step ti, i ≥ 0, one
node is added to the network. For every node v added, we create m edges from
v to existing nodes in the network according to the following linear preferential
attachment function due to Barabasi and Albert [AB02]:

Anonymity in the Wild: Mixes on Unstructured Networks 257

Pr[(v, i)] = ki/
∑

j

kj

where ki is the degree of node i. We continue until |V | = N .

3.3 Scale-Free Random Graph Topology

An alternate way of constructing a large scale-free network is to create a network
with a given power-law degree sequence that is random in all other aspects. Aiello
et al. [ACL00] propose such a random graph model inspired by massive AT&T
call graphs, with two parameters α and β. Where, α gives the fraction of nodes
with degree 1 and β defines the exponent of the power-law function. Then, if y
be the number of vertices of degree x > 0, x and y satisfy log(y) = α − βlog(x).

3.4 Klienberg-Watts-Strogatz(KWS) Small World Topology

Our next network model is inspired by the network of social contacts. It is well
known that any two people are linked by a chain of half a dozen others who are
pairwise acquainted – known as the ‘small-world’ phenomenon. This idea was
popularised by Milgram in the 60s [Mil67].

The KWS graph topology models a small world network that encapsulates the
following: a network rich in local connections, with a few long range connections.
The network generation starts from a N by N lattice each point representing an
individual in a social network. The lattice distance d((i, j), (k, l)) = |k−i|+|l−j|.
For a parameter p, every node u has a directed link to every other node v within
d(u, v) ≤ p. For parameters q and r, we construct q long range directed links
from u to a node v with a probability distribution [Pr(u, v)] = (d(u,v))(−r)

∑
v(d(u,v))(−r) .

Low r values means long-range connections, whereas higher values lead to
preferential connections in the vicinity of u.

3.5 LiveJournal (LJ)

In order to test our ideas on a real world unstructured network, we turned
to a large-scale social network called LiveJournal (LJ). LiveJournal is a social
networking and blogging site with several million members and a large collection
of user defined communities. LiveJournal allows members to maintain journals,
individual and group blogs, and – most importantly for our study here – it allows
people to declare which other members are their friends. Using a web crawler
called touchgraph (http://www.touchgraph.com), we traced the LJ network to
the online friendship network. The snapshot of the network we use in our analysis
has 3,746,240 nodes and 27,430,000 edges.

A mix server bundled along with a future LiveJournal client acts as the basis
of mix deployment. Mix circuits are built on top of the social network topology.

258 S. Nagaraja

3.6 Expander Graphs

Danezis [Dan03] previously analyzed the use of expander graph topologies to
construct mix networks. Expanders are well known to have excellent expansion
properties. We include this as a baseline comparison against theoretical struc-
tured topologies. An expander graph GN,D has a homogeneous topology with N
nodes each with a degree D.

4 Evaluation Framework for Measuring Traffic Analysis
Resistance

Before we set out the evaluation framework, we first clarify what we mean
by “anonymity” in this paper. The focus of this work is on message receiver
anonymity [SD02]: given a message, the attacker should not be able to deter-
mine who sent it to whom, leading to both sender and receiver anonymity re-
quirements. Sender anonymity is determined by the probability that a specific
node is the originator of a given message. Receiver anonymity, also an impor-
tant requirement in a number real world situations, is the probability that a
specific node is the recipient of a given message whose sender is known. There
are other definitions such as relationship anonymity defined by Pfitzmann et.
al. [PH00]. We also note there that the evaluation framework is the contribution
of Danezis [Dan03].

The objective of our analysis is to determine how the topology of a mix
network affects the amount of effort on the attacker’s part to uniquely identify
communication endpoints using traffic analysis attacks alone. The effectiveness
of such attacks depends heavily on the topology of the underlying network. If
the attacker is not able to reduce anonymity beyond his or her initial knowledge
then the mix network is said to be resistant to traffic analysis attacks under the
given threat model.

The attacker might also employ side channel analysis on the end-points before
the data enters the mix network, we do not consider such attacks here. Side
channel information might be timestamps or other information related to the
protocol or mechanism in use. Attacks using such information can be used to link
messages to the communication end-points, and are known as traffic confirmation
attacks [RSG98], their effectiveness depends on the mixes’ batching and flushing
strategy.

4.1 Threat Model

Throughout this paper we consider the adversarial context of a global passive
adversary.

4.2 Measuring Anonymity

There are several ways one can express the anonymity a system provides. In
our analysis we use a quantitative method due to Serjantov and Danezis [SD02],

Anonymity in the Wild: Mixes on Unstructured Networks 259

based on the following definition: “Anonymity of a system may be defined as
the amount of information the attacker is missing to uniquely identify an actor’s
link to an action”. In information theoretic terms, the anonymity of the system
A, is the entropy E , of the probability distribution over all the actors αi, that
they committed a specific action.

A = E [αi] = −
∑

i

Pr[αi]log2Pr[αi] (1)

This gives the number of bits of information, with a negative sign, that the
attacker is missing before they can uniquely identify a sender or a receiver.

4.3 Modeling Mix Route Selection

In order to understand the maximal anonymity provided by a mix network we
use Markov chains to model the route selection process, as they closely match
the way mixes are selected to form a mix route.

The process of selecting a mix route of length k by selecting k random nodes
in the mix network, is equivalent to first selecting a random mix node, and, then
a random neighbour of the first mix, repeating this process k − 2 times. Hence
we may model the route selection process as a random walk on the underlying
graph, with the various states of the Markov chain process being the mix nodes
of the network.

4.4 Measuring Mix Network Efficiency

Receiver Anonymity
In analyzing the receiver anonymity provided by a particular network topology
we need to examine the probability that a specific message is at a particular node
at a certain time. In order to link the sender and the receiver to a particular
message, the attacker must retrace the steps taken by the message through the
mix network starting from the receiver. Let the mix network be an undirected
graph G(V, E). If messages mij are inserted at node i destined for j, then for a
message mt

x at node x at time t, the attacker must link mt
x to mij . Note that

mt
x might either be in the edge or the core of the mix network.
Applying the above mentioned information theoretic metric we have:

A = E(pij)

where pij = Pr[mt
x is mij] is the probability distribution over all the nodes

in V .
Suppose a message is inserted into the mix network through a randomly cho-

sen node. Then after an infinite number of steps, the probability that the message
is present on any randomly chosen node in the network is given by stationary
distribution of the Markov chain π. Let q(0) be the initial probability distribution
describing the node on which message m is introduced into the mix network, this

260 S. Nagaraja

is equivalent to the distribution of input load across the nodes in network. q(t)

then, is the probability distribution of the node on which the message is present
after t steps. (this is also known as the state probability vector of the Markov
chain at time t ≥ 0). With increasing t one would like to see that q(t) merges
with π. The rate at which this takes place is known as the convergence rate of the
Markov chain, and the difference itself is called the relative point-wise distance
defined as:

Δ(t) = maxi
|qt

i − πi|
πi

(2)

The smaller the relative point-wise distance, faster the convergence, and more
efficient the mix network. It is now easy to see that the maximum receiver
anonymity Pr[x = receiver|y = sender] the network can provide is the entropy
of the stationary distribution of the chain.

Anetwork = E(π). (3)

When P is the transition matrix of the chain it is well known that P has n
real eigen-vectors πi and n eigenvalues λi [Wes01].

By using the relation q(t) = q(0)P (t), we calculate the probability distribution
of a message being on a node after having transited a mix route of length t.

Sender Anonymity
Next, we consider the probability distribution of potential originators of a given
message recipient. This may also be modeled by a Markovian random walk. For
a destination node y, consider all random walks terminating at y. In order to
achieve maximal sender anonymity, all these walks must be long enough for the
respective state probability vector to converge with the stationary distribution.
Since this applies equally to all sender nodes in the network [Bor07], the sender
anonymity is given by:

Pr[X = x|y] =
1

N = |V | .

Hence, both maximal sender and receiver anonymity are achieved when the
random walk reaches convergence.

Also, the stationary distribution vector gives the normalized fraction of traffic
load on each mix [Dan07].

4.5 Compromised Mixes

Suppose a subset of mixes are taken over by an adversary. Then a compromised
mix route is defined as a mix circuit that is solely composed of compromised
mix nodes. Then, what is the probability that a randomly chosen mix route is
compromised?

A network topology with poor expansion properties (or lower eigen-value gap
ε = 1−λ2) tends to have relatively ’localized’ mix routes, so that, given the first

Anonymity in the Wild: Mixes on Unstructured Networks 261

mix of a route, there exists a subset of mixes within the network that have a
higher chance of being on the route than others.

The spectral theory of graphs lends us a few tools, namely chernoff bounds, in
quantifying this risk. Suppose S is the set of subverted nodes, and πS the corre-
sponding probability mass of the stationary distribution π. The upper bound of
the probability that a mix route (random walk) of length t goes through tS nodes

of S is given by Gilbert [Gil98]: Pr[tA = t] ≤
(
1 + (1−π(A))ε

10

)
e−t (1−π(A))2ε

20 . How-
ever as Danezis [Dan03] notes, given that this probability exponentially decreases
with increase in t, a small increase in route length will successfully mitigate this
risk.

What is more relevant in the context of unstructured networks, is the presence
of ’hub’ nodes and ’weak-ties’. Hubs [New03b] are special nodes that owing to
their position in the network topology handle large amounts of traffic. Similarly,
weak-ties [Gra73] are edges responsible for significantly reducing average path-
lengths in networks of tightly knit communities such as social networks. The risk
of compromised mix routes is significantly higher in a topology where hubs only
connect to other hubs, and handle most of the network traffic. If an attacker
can locate and strategically target mix nodes that also play the role of a hub,
then the percentage of mix routes under risk can be significant. This property
is known as assortativity [New03a], defined as the affinity of a node to link to
others that are similar or different in some way.

Hence, we simulated a large number of random walks for various topologies
presented in section 3, of different lengths, and make a recommendation on the
route length to mitigate this risk in section 5.1.

4.6 Intersection Attacks

The term intersection attack was introduced by Berthold et al. [BPS00]. These
attacks involve the detection of the preferential use of a mix route. If for some
reason, a sender under attack sends more traffic along a specific route much
more often than other routes, then a simple intersection attack is carried out
by intersecting the set of possible next-hop mixes of every mix with the set
of possible next-hop destinations of previous messages. The actual path of a
message will then become apparent unless the network has countermeasures
against observability.

If each link from a mix node is used to flush messages to its neighbours,
then the potential for the simplest of intersection attacks can be greatly re-
duced [KAP02]. So, for a given node i, we wish to calculate the probability
that any out going link remains unused during a flushing cycle. If each mix
node receives b messages per batch, then each of these will appear on a par-
ticular outgoing link j with a binomial probability distribution pi = 1/degi.
Danezis [Dan03] then calculates the volume of incoming traffic required so that
the probability of any out going link being unused is negligible.

b =
9
f2

(
1 − pi

pi

)
(4)

262 S. Nagaraja

where f is the percentage deviation of traffic output on a particular link of i in
a given flushing cycle from the mean traffic output.

Combining this with pmin, the probability associated with the highest degree
node in the mix network, we can derive the amount of genuine traffic to be mixed
together.

The prevention of basic intersection attacks as a system design criteria is first
found in the work of Pfitzmann and colleagues on ISDN mixes [PPW91], and
more recently to the work of Reiter and Rubin [RR98].

5 Results and Discussion

5.1 Simulation Parameters

In all the synthetically generated networks we considered, we have N � 5000
nodes. The parameters used for each of them are listed below.

We model scale-free networks with linear preferential attachment with m links
per node and average node degree 〈d〉; 2 ≤ m ≤ 7 and 4 ≤ 〈d〉 ≤ 14.

Next we model scale-free random networks which have a scale-free degree
sequence but which are random in all other respects. Generated with parameters
α = 0.25, β = 0.25 and Average node degree 4 ≤ 〈d〉 ≤ 14. See section 3.3 for
an explanation of α and β.

Klienberg-Watts-Strogatz model of directed social network ties is analyzed
next, generated with parameters r, the lattice radius within which each node
creates direct links to all its neighbors. q is the number of weak ties. We used
1 ≤ r ≤ 4 and 2 ≤ q ≤ 10.

Our next network is based on our primary source data, obtained by web-
crawling the LiveJournal site. The snapshot of the network we use in our analysis
has 3,746,240 nodes and 27,430,000 edges.

Finally we analyze two theoretical topologies, one degree heterogeneous and
the other degree homogeneous, to offer a baseline comparison against ER graph
and constant expander graph topologies.

The ER graph is created with each edge formation as the result of a Poisson
distribution of p = 0.0028 with 〈d〉 = 14.

The constant expander graph is created with each node having D = 14 edges.
Motwani et.al. [MR95] prove a relation between the second eigenvalue λ2 of the
transition matrix of a constant expander graph and the degree D of a node
λ2 ≥ 2

√
D−1
D . We can then use the result of Sinclair [Sin93] connecting λ2,

random walk length t and convergence rate Δ(t), namely Δ(t) ≤ λt
2

mini∈V πi
.

For D = 14, we have a constant expander graph with theoretical minimum
second eigen-value of λ2 ≥ 0.5527708, converging to maximal anonymity state
in approximately 4 steps. This forms the baseline against which we compare all
the other topologies.

5.2 Efficiency

We can now comment on the efficiency and recommended mix route lengths for
various network topologies by comparing them to our baselines.

Anonymity in the Wild: Mixes on Unstructured Networks 263

5 10 15 20

0
2

4
6

8
10

Convergence of random walks
on scale−free random networks

Route length

E
nt

ro
py

<d>=2
<d>=3
<d>=4
<d>=5
<d>=6

Network (N = 5000) 〈d〉orD t Anetwork

SFR 4 8 11.4383
6 7 11.5626
8 6 11.5958
10 6 11.6135
12 5 11.6351

ER 14 7 12.2339

Expander 14 4 12.2877

Fig. 1. Convergence rates: Efficiency and maximal receiver anonymity for Scale-free
random, ER and Constant expander graph topologies

The efficiency of mix topologies based on a scale-free random network is
shown in Figure 1. It plots the anonymity achieved against increasing random
walk lengths. Maximal receiver anonymity is calculated using equation 3 is the
entropy of the probability distribution of the chain at convergence, while maxi-
mal sender anonymity is 1

N .
Our calculations show that maximal anonymity is reached in just 6 steps in the

medium density case 〈d〉 ≥ 4, as opposed to 4 steps in to 4 steps in an expander
graph topology. It turns out that social collaboration networks [New01a,New01c,
New01b] with scale-free characteristics have average degrees in the range of 4 ≤
〈d〉 ≤ 18. This suggests, firstly, that efficient mix networks can be designed using
scale-free random networks, and second, that mildly denser scale-free networks
are more suitable for building mix networks than sparser ones.

While this is an encouraging initial result, it is important to strike a note
of caution. Scale-free random graphs only model the scale-free aspect of degree
distribution, while being random in every other way. However most real world
unstructured networks have several other non-random characteristics apart from
their degree distributions.

A number of real world unstructured networks are not scale-free, hence we
included the Klienberg-Watts-Strogatz(KWS) network topology, as it explicitly
models the presence of weak ties in a network. We experiment with a number
of parameter configurations; selecting r = 1 and r = 4 to model low and high
richness in local links or ’strong ties’ between nodes; and 2 ≤ q ≤ 10 the number
of short cuts or ’weak ties’, between mix nodes. Figure 2-a plots mix-route length
vs mix network anonymity, for the KWS topology. When the topology is poor in
local links, it seems to converge in 7 to 8 hops, given enough short cuts. However,
if the network invests a large amount of resources into local connections forming
relatively tightly knit communities, then regardless of the amount of shortcuts,
convergence is not achieved until 62 hops!

264 S. Nagaraja

5 10 15 20

0
2

4
6

8
10

12
Convergence of random walks

on Klienberg−Watts−Strogatz model

Route length

E
nt

ro
py

q=2,r=1
q=4,r=1
q=6,r=1
q=8,r=1
q=10,r=1
q=2,r=4
q=4,r=4, q=6,r=4,q=8,r=4,q=10,r=4

(a) Klienberg-Watts-Strogatz model

5 10 15 20

0
2

4
6

8
10

12

Convergence of random walks
on scale−free and ER networks

Route length

E
nt

ro
py

ER <d>=14
SF m=2
SF m=3
SF m=4
SF m=5
SF m=6
SF m=7

(b) Scale-free network with preferen-
tial attachment

Fig. 2. Mean entropy vs mix-route length

Our final model network topology is the scale-free network based on linear
preferential attachment, which has attracted much attention in the complex
networks literature. This topology models a scale-free network where hubs are
connected to other hubs, a pattern that is repeatedly observed in many real world
scale-free networks. The parameter m controls graph sparsity, random walk and
convergence results are shown in figure 2-b. Our simulations show that while
very sparse topologies converge in 10 to 15 hops, topologies that are relatively
dense converge within 6 or so hops, this is comparable to the optimal 4 hops of
a constant expander graph.

Next, we considered our primary data source the LiveJournal graph with
a little less than 4 million nodes. Figure 3 shows the convergence rate of mix
routes, which we note converges to the stationary distribution in around 11 hops.
While this seems a high number in comparison to expander graphs (converging
in 4 hops), we also note that the entropy achieved by the random walk in 4
hops in LJ is A4

LJ = 15.56. To obtain the equivalent on an expander graph
topology we would only need 215.56 or 48309 nodes. On the face of it the design
decision seems really simple, to go for a structured expander graph topology.
We argue a different view: A successful mix network design must also consider
liability management issues arising from running a mix. Considering that aspect,
topology links backed up by social capital are likely to be more robust than those
of an optimal topology, but where nodes quickly buckle under legal pressure. We
propose, running mixes on the nodes of the LJ topology bundled along with a
future LiveJournal client. Nodes only allow incoming traffic from their neighbors,
and will only direct outgoing traffic to their neighbors.

In this context, an interesting question is why nodes would process traffic
that didn’t originate from their neighbors, and especially so in the face of legal
hassles?

Anonymity in the Wild: Mixes on Unstructured Networks 265

2 4 6 8 10 12 14

6
8

10
12

14
16

18

Convergence of random walks
on LiveJournal [N=3800000]

Route length

E
nt

ro
py

Fig. 3. Mean entropy vs mix-route length
for LiveJournal

Network m t Anetwork

SF 2 15 11.5852
3 10 11.6961
4 6 11.7293
5 6 11.7687
6 6 11.7953
7 6 11.8090

KWS q = 2, p = 1 11 12.2945
q = 10, p = 1 5 12.2939
q = 2, p = 4 63 11.6440
q = 10, p = 4 63 11.6380

ER 〈d〉 = 14 7 12.2339

Expander D = 14 4 12.2877

Fig. 4. Convergence rates: Ef-
ficiency and maximal receiver
anonymity for linear Scale-free,
KWS, ER and constant expander
graph topologies

We offer the following reasoning: Humans making decisions on whether or not
to run a mix server, will have to consider the following costs. They benefit in
the long term, from processing traffic for unknown nodes in order to generate a
diverse user base, the need for which is well illustrated in Dingledine and Math-
ewson [DM06]. However this only holds if other mixes cooperate accordingly.
Then there is the immediate social benefit of having processed traffic for your
friends. The success of the system then depends on the extent to which individual
nodes perceive the costs of litigation pressure to be less than the total of imme-
diate social benefit and the long term benefit of a diverse user base. Psychology
studies tell us that humans involved in taking security decisions weigh short and
long term benefits differently. It should also be interesting to investigate whether
the idea of running a mix to primarily process traffic for your friends is an ef-
fective tool for seeding indirect reciprocity in a mix network where cooperation
flourishes.

5.3 Compromised Mix Nodes

As explained in our evaluation framework, compromised nodes can lead to com-
promised routes. This presents a special challenge in unstructured networks
where πA, the probability mass of the stationary distribution π, corresponding
to set of compromised nodes A, can be significant for topological reasons.

To measure the robustness to nodes being strategically compromised by an
attacker, we simulated 100000 random walks of different lengths, for each of
our network topologies, in the range indicated by efficiency considerations of

266 S. Nagaraja

0 100 200 300 400 500

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
Mix route length = 3

No. of mixes compromised

P
ro

b.
 o

f c
om

pr
om

is
ed

 r
ou

te

ER p=0.0028
SF m=2
SF m=3
Sm=4
SF m=5
SF m=6
SF m=7

(a) length=3

0 100 200 300 400 500

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

Mix route length = 4

No. of mixes compromised

P
ro

b.
 o

f c
om

pr
om

is
ed

 r
ou

te

ER p=0.0028
SF m=2
SF m=3
Sm=4
SF m=5
SF m=6
SF m=7

(b) length=4

0 100 200 300 400 500

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

Mix route length = 5

No. of mixes compromised

P
ro

b.
 o

f c
om

pr
om

is
ed

 r
ou

te

ER p=0.0028
SF m=2
SF m=3
Sm=4
SF m=5
SF m=6
SF m=7

(c) length=5

0 100 200 300 400 500

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
Mix route length = 6

No. of mixes compromised

P
ro

b.
 o

f c
om

pr
om

is
ed

 r
ou

te

ER p=0.0028
SF m=2
SF m=3
Sm=4
SF m=5
SF m=6
SF m=7

(d) length=6

Fig. 5. Probability of mix-route compromise vs no. of corrupt nodes

the previous section 3 ≤ t ≤ 6, and measured the fraction that passed through
compromised nodes. The set of compromised nodes is chosen to consist of the
nodes with the highest degrees in the network. In each case, for mix routes greater
than 4 hops the probability of existence of a compromised mix route is negligible.
Fig 5 in the appendix confirms that the threat of mix route compromise can be
successfully reduced by suitably increasing the mix-route length.

5.4 Intersection Attacks

Using equation 4 we consider the required batch sizes for a threshold mix, so
that the traffic output on any link in the mix network does not deviate by more
than 5% from the mean traffic output on that link. For f = 5 we calculate the
number of messages that must be received in each mixing cycle in table 1.

Anonymity in the Wild: Mixes on Unstructured Networks 267

Table 1. Batch sizes required to prevent intersection attacks

Network 〈d〉 pmin Batch size

SFR 4 0.0344 10.08
6 0.0222 15.84
8 0.0243 14.4
10 0.0192 18.36
12 0.0135 26.28
14 0.0125 28.44

KWS 27 (q = 1, r = 1) 0.0294 11.88
43 (q = 10, r = 1) 0.0169 20.88
26 (q = 1, r = 4) 0.0333 10.44
28 (q = 10, r = 4) 0.0294 11.88

SF-linear 4 0.0048 74.16
6 0.0048 74.16
8 0.0041 86.04
10 0.0038 93.6
12 0.0037 96.12
14 0.0031 112.32

LJ 7.3221 0.00857 41.64
ER 14 0.0333 10.44
Expander 14 0.0714 4.68

From table 1 it is clear that scale-free random networks and KWS both require
a batch size that is 4-5 times that of expander graphs. Whether social networks
can produce enough ’chatter’ to feed genuine traffic into the mix network is an
open question.

Our theoretical base line of ER network topology does slightly better at a
little over twice that. More significantly, the LJ network has a batch size of
almost 9 times the required batch size for expander graphs. Scale-free networks
with linear preferential attachment are the worst performing, requiring a batch
size almost 20 times larger than expanders. We think that the exceptionally high
value of batch size in LJ network is due to its size of four million or so nodes.
While does not mean that LJ is inherently unsuitable as a mix network topology,
but it certainly indicates a scalability limit with the deployment of mixes on LJ
nodes, as proposed earlier.

6 Conclusions

We have analyzed a comprehensive set of network topologies from the perspective
of efficiency, maximal anonymity, compromised nodes and simple intersection
attacks in comparison with (provably optimal) expander graphs.

To the standard threat model of the global passive adversary, we have added
real world issues such as liability management and the need for clear incentives

268 S. Nagaraja

for carrying traffic under the pressure of legal threats, and discussed our simu-
lation results in this context.

We have considered topologies with two important characteristics found in the
empirical studies of large-scale unstructured networks: scale-freeness (scale-free
random graph) and the small-world property (Klienberg-Watts-Strogatz (KWS)
graph). In both the topologies, we can recommend mix route lengths for achiev-
ing 95% of maximal anonymity, that is only a few hops larger than the optimal
route length found in expander graph topologies. Currently deployed mix net-
works such as TOR have around 540 volunteers. To increase the scale of such mix
deployments the Internet, we believe the way forward (for high latency systems
only) is to use online social networks. The minimum mix route must have two
mixes to allow sender and receiver anonymity. For this length, a mix network
constructed by placing mixes on the nodes of a social network such as Live-
Journal can achieve far higher maximal anonymity as per the entropy metric
we have used. We argue that including network incentives within a framework
does not allow the construction of structured overlay mix topologies that can
robustly withstand the threat of legal action. By moving to social networks, we
make a start on tapping the social capital underlying node-node interaction to
encourage users to deploy and run mixes with policies that reflect this aspect.

We also found that subverted nodes, either compromised randomly, or by
strategic choice, on the basis of their degrees has little effect on the efficiency of
a mix network. This is because the route length required to mitigate that risk is
less than the recommended length for achieving efficient convergence rates.

We also analyzed scale-free and the small-world topologies for their robustness
to attacks based on traffic load patterns observable on their out-going and in-
coming links. Both the scale-free random graph topology and the KWS topology
turn out to require almost 5 times as much traffic as corresponding expander
graph topology. This suggests the need for further tests to see if enough genuine
traffic is generated in online social network interaction, to satisfy the minimum
batch sizes required for preventing the most basic versions of these attacks.

We conclude that, unstructured networks based on large-scale topologies are
indeed very promising, we have outlined the merits and challenges these topolo-
gies present to the design of mix networks for anonymous communication.

Acknowledgements

The authors are grateful to Ross Anderson and Nikita Borisov for reviews on
early versions of the paper, and to George Danezis and Roger Dingledine, for
thought provoking discussions.

References

[AB02] Albert, R., Barabási, A.: Statistical mechanics of complex networks (2002)
[ACL00] Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs.

In: STOC 2000: Proceedings of the thirty-second annual ACM symposium
on Theory of computing, pp. 171–180. ACM Press, New York (2000)

Anonymity in the Wild: Mixes on Unstructured Networks 269

[Bor05] Borisov, N.: Phd thesis: Anonymous routing in structured peer-to-peer
overlays (April 2005)

[Bor07] Borisov, N.: Private communication (June 2007)
[BPS00] Berthold, O., Pfitzmann, A., Standtke, R.: The disadvantages of free MIX

routes and how to overcome them. In: Federrath, H. (ed.) Designing Pri-
vacy Enhancing Technologies. LNCS, vol. 2009, pp. 30–45. Springer, Hei-
delberg (2001)

[Cha81] Chaum, D.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM 4(2) (February 1981)

[CSWH00] Clarke, I., Sandberg, O., Wiley, B., Hong, T.: Freenet: A distributed
anonymous information storage and retrieval system. In: Federrath, H.
(ed.) Designing Privacy Enhancing Technologies. LNCS, vol. 2009, pp.
46–66. Springer, Heidelberg (2001)

[Dan03] Danezis, G.: Mix-networks with restricted routes. In: Dingledine, R. (ed.)
PET 2003. LNCS, vol. 2760, Springer, Heidelberg (2003)

[Dan07] Danezis, G.: Private communication (July 2007)
[DDM03] Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: Design of a type

iii anonymous remailer protocol. In: IEEE Symposium on Security and
Privacy, pp. 2–15 (2003)

[DM06] Dingledine, R., Mathewson, N.: Anonymity loves company: Usability and
the network effect. In: Proceedings of the Fifth Workshop on the Eco-
nomics of Information Security (WEIS 2006), Cambridge, UK (June 2006)

[DMS04] Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation
onion router. In: Proceedings of the 13th USENIX Security Symposium
(August 2004)

[EG02] Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed
sensor networks. In: CCS 2002: Proceedings of the 9th ACM conference
on Computer and communications security, pp. 41–47. ACM Press, New
York (2002)

[ER59] Erdos, P., Rnyi, A.: On random graphs. Publicationes Mathemticae (De-
brecen) 6, 290–297 (1959)

[Gil98] Gillman, D.: A chernoff bound for random walks on expander graphs.
SIAM J. Comput. 27(4), 1203–1220 (1998)

[Gra73] Granovetter, M.S.: The strength of weak ties. The American Journal of
Sociology 78(6), 1360–1380 (1973)

[KAP02] Kesdogan, D., Agrawal, D., Penz, S.: Limits of anonymity in open envi-
ronments. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, Springer,
Heidelberg (2003)

[KM02] Klingberg, T., Manfredi, R.: ”gnutella 0.6” (June 2002)
[Mil67] Milgram, S.: The small world problem. Psychology Today 2, 60–67 (1967)
[MPS03] Mihail, M., Papadimitriou, C., Saberi, A.: On certain connectivity prop-

erties of the internet topology. In: FOCS 2003: Proceedings of the 44th
Annual IEEE Symposium on Foundations of Computer Science, p. 28.
IEEE Computer Society, Washington, DC (2003)

[MR95] Motwani, R., Raghavan, P.: Randomized Algorithms, vol. 1. Cambridge
Univ. Press, Motwani (1995)

[New01a] Newman, M.E.: The structure of scientific collaboration networks. Proc.
Natl. Acad. Sci. 98(2), 404–409 (2001)

[New01b] Newman, M.E.J.: Scientific collaboration networks. ii. shortest paths,
weighted networks, and centrality. Phys. Rev. E 64(1), 016132 (June 2001)

270 S. Nagaraja

[New01c] Newman, M.E.J.: Scientific collaboration networks. i. networks construc-
tion and fundamental results. Phys. Rev. E 64(1), 016131 (June 2001)

[New03a] Newman, M.E.J.: Mixing patterns in networks. Physical Review E 67,
026126 (2003)

[New03b] Newman, M.E.J.: The structure and function of complex networks. SIAM
Review 45(2), 167–256 (2003)

[PH00] Pfitzmann, A., Hansen, M.: Anonymity, unobservability, and
pseudonymity: A consolidated proposal for terminology. Draft (July
2000)

[PPW91] Pfitzmann, A., Pfitzmann, B., Waidner, M.: ISDN-mixes: Untraceable
communication with very small bandwidth overhead. In: GI/ITG Confer-
ence on Communication in Distributed Systems, pp. 451–463 (February
1991)

[Ran06] Randall, D.: Rapidly mixing markov chains with applications in computer
science and physics. Computing in Science and Engineering 8(2), 30–41
(2006)

[RFI02] Ripeanu, M., Foster, I., Iamnitchi, A.: Mapping the gnutella network:
Properties of large-scale peer-to-peer systems and implications for system
design. IEEE Internet Computing Journal 6(1) (August 2002)

[RR98] Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM
Trans. Inf. Syst. Secur. 1(1), 66–92 (1998)

[RSG98] Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Anonymous connections
and onion routing. IEEE Journal on Selected Areas in Communications
16(4) (1998)

[SD02] Serjantov, A., Danezis, G.: Towards an information theoretic metric for
anonymity. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS,
vol. 2482, Springer, Heidelberg (2003)

[Sin93] Sinclair, A.: Algorithms for random generation and counting: a Markov
chain approach. Birkhauser Verlag, Basel, Switzerland (1993)

[STRL00] Syverson, P., Tsudik, G., Reed, M., Landwehr, C.: Towards an Analysis
of Onion Routing Security. In: Federrath, H. (ed.) Designing Privacy En-
hancing Technologies. LNCS, vol. 2009, pp. 96–114. Springer, Heidelberg
(2001)

[Wes01] West, D.B: Introduction to Graph Theory, 2nd edn. Prentice Hall, Engle-
wood Cliffs (2001)

A Mix-Route Compromise on Linear Preferential
Attachment Scale-Free Networks

In this section we sketch a few analytical results concerning mix-route compro-
mise in BA scale-free networks.

Let B be the set of compromised high vertex-order centrality nodes. For a
route to be fully compromised, all intermediate nodes must be in B. We then
wish to calculate,

P (Cl) = [Pr(Random − Walk(v1....vl))]∀v1...vl ⊆ B.

Anonymity in the Wild: Mixes on Unstructured Networks 271

It is straightforward to see that if l > |B| then P(C)=0. In BA scale-free
networks, all hubs(high vertex-order) nodes are connected to each other. Hence,

P (C) =
|B| − 1∏

j∈B
kj

.

B Convergence Rate and Network Size in Scale-Free
Random Networks

Simulations conducted in this paper have not accounted for the effect of varying
network size on the convergence rate of the respective topologies. We address
this, by offering a simple conductance based proof that the second eigen-value
of a scale-free network is a independent of the network size. See [Ran06] for a
review of the conductance based technique as well as others.

We denote a scale-free network generated by preferential attachment, by
Gm,n(V, E) where m is the number of initial nodes created at time=t0 and
n is the total number of nodes in the network. At every time step ti, i ≥ 0, m
nodes are added to the networks. For every node added, we create m edges from
the node to existing nodes in the network. We continue until |V | = n.

Next, there is an intimate relationship between the rate of convergence and
a certain structural property called the conductance of the underlying graph.
Consider a randomly chosen sub-graph S of G(V, E). Suppose a random walk
on the graph visits node i i ∈ S. What is the probability that the walk exits S
in a single hop. If conductance is small, then a walk would tend to “get stuck”
in S, whereas if conductance is large it easily “flows” out of S.

Formally, for S ⊂ G, the volume of S is volG(S) =
∑

u∈S dG(u), where dG(u)
is the degree of node u. The cutset of S, CG(S, S), is the multiset of edges
with one endpoint in S and the other endpoint in S. The textbook definition of
conductance ΦG of the graph G is the following:

ΦG = min
S⊂V,volG(S)≤volG(V)/2

|CG(S, S)|
volG(S)

(5)

[MPS03] prove that the conductance of a scale-free network is a constant.
Specifically, ∀m ≥ 2 and c < 2(d − 1) − 1, ∃α = α(d, c) such that

Φ =
α

m + α
(6)

From [Sin93] we have the following bound for λ2:

1 − 2Φ ≤ λ2 ≤ 1 − Φ2/2 (7)

Substituting for Φ from equation 6 in equation 7, it is easy to see that λ2 is
a constant.

Author Index

Abbott, Timothy G. 184

Danezis, George 30
Diaz, Claudia 30

Faust, Sebastian 77
Federrath, Hannes 233
Francis, Paul 153
Franz, Matthias 1
Fritsch, Lothar 77

Gedrojc, Bartek 77
Goldberg, Ian 62, 95
Guha, Saikat 153

Hengartner, Urs 62
Herrmann, Dominik 233

Johnson, Peter C. 113

Kapadia, Apu 113
Kate, Aniket 95
Kohlweiss, Markulf 77

Lai, Katherine J. 184
Lieberman, Michael R. 184

Meyer, Bernd 1
Murdoch, Steven J. 167

Nagaraja, Shishir 254

Øverlier, Lasse 134

Pashalidis, Andreas 1
Preneel, Bart 77
Price, Eric C. 184

Safavi-Naini, Rei 200
Salim, Farzad 200
Schunter, Matthias 218
Serjantov, Andrei 17
Sheppard, Nicholas Paul 200
Smith, Sean W. 113
Syverson, Paul 134

Troncoso, Carmela 30
Tsang, Patrick P. 113
Tsudik, Gene 45

Waidner, Michael 218
Wendolsky, Rolf 233

Zaverucha, Greg 95
Zhong, Ge 62
Zieliński, Piotr 167

	Title Page
	Foreword
	Organization
	Table of Contents
	Attacking Unlinkability: The Importance of Context
	Introduction
	Measuring Unlinkability
	TheImportanceofContext
	The Number of Equivalence Classes
	The Cardinality of Equivalence Classes
	A Reference Partition
	Breach of Privacy: Linking Case
	Breach of Privacy: Unlinking Case
	Breach of Privacy: Combined Case

	Conclusion
	References

	A Fresh Look at the Generalised Mix Framework
	Introduction
	The Generalised Mix Framework
	Expected Pool Size of Various Mixes
	Timed Pool Mix
	Timed Dynamic Pool Mix

	The Binomial Mix
	Binomial+ Mix
	Logarithmic and Square Root Mixes

	Distribution of the Number of Messages to Forward
	Distribution of the Number of Messages in Mixes
	Conclusion
	References

	Two-Sided Statistical Disclosure Attack
	Introduction
	Background and Related Work
	Mix Networks with Anonymous Replies
	A Formal Model for Message Replies

	The Two-Sided Statistical Disclosure Attack
	The `Traditional' Statistical Disclosure Attack
	The Two-Sided Statistical Disclosure Attack

	Evaluation
	Discussion and Open Problems
	Conclusions
	References

	A Family of Dunces: Trivial RFID Identification and Authentication Protocols
	Introduction
	Operating Environment
	Goals
	Modes of Operation
	Tag Requirements

	A Family of Dunces: YA-TRIP, YA-TRAP and YA-TRAP*
	The Main Idea
	YA-TRIP: Yet Another Trivial RFID Identification Protocol
	Drawbacks
	YA-TRAP: Adding Tag Authentication
	YA-TRAP*: Adding DoS Resistance
	Discussion and Extensions
	Efficiency Considerations
	Security Analysis?

	Related Work

	Louis, Lester and Pierre: Three Protocols for Location Privacy
	Introduction
	Related Work
	Homomorphic Encryption
	Paillier
	CGS97

	The Louis Protocol
	Protocol Description
	Measurements
	Analysis

	The Lester Protocol
	Protocol Description
	Measurements
	Analysis

	The Pierre Protocol
	Protocol Description
	Measurements
	Analysis

	Comparison of the Protocols
	Conclusion
	References

	Efficient Oblivious Augmented Maps: Location-Based Services with a Payment Broker
	Introduction
	Tools
	Privacy Protected LBS Scheme: Security Definition and Solution Sketch
	Definition
	High-Level Approach and First Sketch
	First Revision: Database Secrecy
	Second Revision: Payment Infrastructure

	Our Multi-party Proxy LBS Scheme
	Security and Efficiency
	Efficiency Analysis
	Security Analysis

	Conclusion
	References

	Pairing-Based Onion Routing
	Introduction
	Our Contributions

	Related Work
	Pairing-Based Key Agreement with User Anonymity
	Preliminaries
	Anonymous Key Agreement
	Security and Anonymity
	Distributed PKG
	Applications of Our Anonymity Schemes

	Pairing-Based Onion Routing
	Design Goals and Threat Model
	Pairing-Based Onion Routing Protocol
	Security Analysis
	Advantages over First-Generation Onion Routing
	Advantages over Telescoping in Tor
	Issues with the Proposed Scheme

	Systems Issues
	Performance
	Security Levels and Parameter Sizes
	Cost of Building a Circuit with Tor
	Cost of Building a Circuit with Paring-Based Onion Routing
	Comparison and Discussion

	Conclusion

	Nymble: Anonymous IP-Address Blocking
	Introduction
	Related Work
	System Overview
	The Nymble Authentication Module
	The Model
	Our Construction

	The $NYMBLE$ System
	System Setup
	User Registration
	Acquisition of Nymble Tickets
	Request for Services
	Complaining
	Update

	Evaluation
	Discussion
	Conclusion
	References
	Security Model, Proofs and Analysis
	Security Model for $Nymble-Auth$
	Security Proofs for $Nymble-Auth$

	Improving Efficiency and Simplicity of Tor Circuit Establishment and Hidden Services
	Introduction
	Background
	Circuit-Building Protocol Description
	Overview
	Protocol Description
	Setting Up the Circuit

	Hidden Service Protocol Description
	Discussion
	Calculation Reduction
	Location Hidden Service Effects
	Security

	Conclusion

	Identity Trail: Covert Surveillance Using DNS
	Introduction
	DNS Overview and Related Work
	Identity Trail Attack
	Attack Validation
	Discovering DNS Names
	Monitoring Hosts

	Solutions
	Short-Term Defense
	Long-Term Defense

	Conclusions and Future Work
	References

	Sampled Traffic Analysis by Internet-Exchange-Level Adversaries
	Introduction
	Location Diversity in Anonymity Networks
	Impact of Internet Exchanges on Physical Topology
	Experimental Results

	Traffic Analysis from Sampled Data
	Traffic Monitoring in High-Speed Networks
	Traffic Analysis Assumptions

	Mathematical Analysis
	Model
	Basic Solution
	Long-Lived Flows
	General Flows
	Evaluation

	Future Work
	Conclusion
	References
	Appendix

	Browser-Based Attacks on Tor
	Introduction
	How Tor Works
	Related Work
	Browser Attacks
	Finding Hidden Servers

	A Browser-Based Timing Attack
	The Attack
	A Browser-Based Timing Attack Using Only HTML
	Torbutton
	Tor Exit Policies
	Using Tor Exit Policies to Simplify the Timing Attack
	Using TCP Streams to Simplify the Timing Attack
	Entry Guards

	Methods
	Defenses Against Browser-Based Attacks
	Disabling Active Content Systems
	HTTPS

	Analysis and Results
	Conclusion

	Enforcing P3P Policies Using a Digital Rights Management System
	Introduction
	Preliminaries
	DRM
	MPEG-21
	SITDRM
	P3P

	P3P-Enabled SITDRM Architecture
	Constructing a License from a P3P Preferences
	Purpose
	Retention
	Data-Type
	Recipients

	Specifying P3P Preferences
	Future Work
	Conclusion
	References
	Pseudo Codes to Construct a Preference Template
	Security Architecture of P3P-Enabled SITDRM

	Simplified Privacy Controls for Aggregated Services — Suspend and Resume of Personal Data
	Introduction
	Usable Privacy Controls in Aggregated Services
	Online Retail Scenario
	Transparency and Control Using a Privacy Panel
	Related Technologies

	A Simple Policy Model for Local Privacy Enforcement
	Managing Privacy Across Multiple Organizations
	Preventing Disclosure to Untrusted Organizations
	Managing Data Usage Permissions for Disclosed Data

	Enhancing User Control
	Increased Transparency
	Dynamic Trust Management
	Verifiable Blocking and Unblocking
	Protection of Mandatory Data

	Conclusion
	References

	Performance Comparison of Low-Latency Anonymisation Services from a User Perspective
	Introduction and Motivation
	Performance Indicators and Evaluation Scenarios
	Data Collection Methodology
	Test Suite Overview
	Scope of the Evaluation
	Data Quality Measures

	Statistical Methodology for Analysis and Comparison
	t-tests
	Regression Analysis

	Evaluation
	Descriptive Statistics for DD, CCC and Tor
	Tor over Daytime
	Comparison of Tor and DD in the Afternoon
	Comparison of Tor and CCC in the Afternoon
	Correlations of User Numbers and Performance

	Future Work
	Conclusion
	References

	Anonymity in the Wild: Mixes on Unstructured Networks
	Introduction
	Related Work
	Network Models
	Erdös-Rényi Model of Random Networks
	Scale-Free Networks with Linear Preferential Attachment
	Scale-Free Random Graph Topology
	Klienberg-Watts-Strogatz(KWS) Small World Topology
	LiveJournal (LJ)
	Expander Graphs

	Evaluation Framework for Measuring Traffic Analysis Resistance
	Threat Model
	Measuring Anonymity
	Modeling Mix Route Selection
	Measuring Mix Network Efficiency
	Compromised Mixes
	Intersection Attacks

	Results and Discussion
	Simulation Parameters
	Efficiency
	Compromised Mix Nodes
	Intersection Attacks

	Conclusions
	Mix-Route Compromise on Linear Preferential Attachment Scale-Free Networks
	Convergence Rate and Network Size in Scale-Free Random Networks

	Author Index

